A ,B, C, D e E são vértices de um trapézio isósceles de bases AB e CD . Sabendo que: B(1,-1,2) , C(3,-2,3) e D (3,1,0) , Determine A: resp: a(1,0,1)
Tô quebrando a cabeça, mas tá difícil.



![\sqrt[2]{4 +4 +9t^2 + 12t +4 + 9t^2-12t}=\sqrt[2]{6} \sqrt[2]{4 +4 +9t^2 + 12t +4 + 9t^2-12t}=\sqrt[2]{6}](/latexrender/pictures/a6903085a483c58d9b9d067d2eed18c9.png)


=![\sqrt[2]{2^2 + (-1)^2 + 1^2} \sqrt[2]{2^2 + (-1)^2 + 1^2}](/latexrender/pictures/91343d170c2d061c1f4eb13800818bfa.png)

Voltar para Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)