• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida sobre plano

Duvida sobre plano

Mensagempor iarapassos » Seg Set 03, 2012 19:26

a questão é:

Dado o plano \pi: X = (0,0,1) + h(-1,-1,-1) + t(-1,-2,-4); h,t\in\Re e a reta AB sendo A(0,0,0) e B(1,1,1), determine a equação do plano \alpha que passa pelo ponto onde a reta AB fura o plano \pi e é paralelo ao plano \beta: x - 3 = 0.

Tenho que {v}_{AB} = B - A = (1,1,1)

{n}_{\pi} = (-1,-1,-1) x (1,-2,-4) = (2,-3,1)

{n}_{\pi}. {v}_{AB} = (2,-3,1).(1,1,1) = 0

Logo, \pi//{n}_{AB}

Fiz as contas, e vi que a reta e o plano são estritamente paralelos, pois r não está contida em pi.

Mas se o plano pi e reta AB são paralelos. Como a reta AB pode "furar" o plano pi?

Me ajude a desenvolver o raciocínio!
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Duvida sobre plano

Mensagempor LuizAquino » Qua Set 05, 2012 16:41

iarapassos escreveu:a questão é:

Dado o plano \pi: X = (0,0,1) + h(-1,-1,-1) + t(-1,-2,-4); h,t\in\Re e a reta AB sendo A(0,0,0) e B(1,1,1), determine a equação do plano \alpha que passa pelo ponto onde a reta AB fura o plano \pi e é paralelo ao plano \beta: x - 3 = 0.

Tenho que {v}_{AB} = B - A = (1,1,1)

{n}_{\pi} = (-1,-1,-1) x (1,-2,-4) = (2,-3,1)

{n}_{\pi}. {v}_{AB} = (2,-3,1).(1,1,1) = 0

Logo, \pi//{n}_{AB}

Fiz as contas, e vi que a reta e o plano são estritamente paralelos, pois r não está contida em pi.

Mas se o plano pi e reta AB são paralelos. Como a reta AB pode "furar" o plano pi?

Me ajude a desenvolver o raciocínio!


A "raciocínio" é simples: houve um erro de digitação no texto do exercício. De fato, \pi e r são estritamente paralelos e portanto não possuem ponto em comum.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: