• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Interseção de dois planos

Interseção de dois planos

Mensagempor bibs » Qui Ago 27, 2009 16:22

O enunciado da questão é o seguinte:
Obtenha uma equação vetorial da interseção dos planos pi1 e pi2, se esta nao for vazia.
a)pi1: X= (1,-2,0) + ?(1,0,-1) + ?(0,0,-1)
pi2: X = (1,0,3) + ?(1,2,0) + ?(-1,1,-1)

b) pi1: X= (1,-0,0) + ?(0,1,1) + ?(1,2,1)
pi2: X = (0,0,0) + ?(0,3,0) + ?(-2,-1,-1)


Primeiro tentei descobrir a equação geral de cada plano através de uma matriz, na letra a eu obtive:
p1: y=-2
pi2: -2x+y+3z-7=0

Daí substitui y=-2 na eq de pi2 e obtive eq. paramétricas dizendo que z seria ?. Daí eu deveria obter uma equação vetorial da reta, porém a resposta do gabarito está totalmente diferente, o mesmo se sucede com o item B.

Obtive: x=9/3+3/2?
y=-2
z=?

e então r: X= (9/2, -2,0)+?(3/2,0,1) na letra a
mas a resposta é (3,-2,5)+?(3,0,2) para a letra a
e=> X=(4,5,2)+ ?(2,3,1) para b.

Espero que possam me ajudar, obrigada.
bibs
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Ago 27, 2009 16:05
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}