• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Par de segmentos

Par de segmentos

Mensagempor Cleyson007 » Ter Ago 14, 2012 12:19

Bom dia a todos!

Verifique se o par de segmento AB e CD está em reta paralela ou coincidente. Em caso afirmativo, mostre geometricamente, se possui o mesmo sentido ou sentido oposto.

A = (0,?2), B = (2, 2), C = (0, 1), D = (?1,?1).

Estou resolvendo assim:

\overrightarrow{AB}=(2,4) e \overrightarrow{CD}=(-1,-2)

Coeficiente angular entre os vetores m=\frac{\Delta\,y}{\Delta\,x}=2

Como prosseguir?

No aguardo.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Par de segmentos

Mensagempor e8group » Ter Ago 14, 2012 18:25

Olá boa tarde .Eu tentaria assim ,veja :


Solução 1 .


Sejam as retas r ,s onde os pontos , A,B \in r e C,D \in s e os vetores \overrightarrow{AB} e \overrightarrow{CD} são diretores as retas r ,s .Assim temos que ,


r : (x,y,z) = \lambda \overrightarrow{AB} + A


s: (x_1,y_1,z_1) = \lambda \overrightarrow{CD} + C.


(continue)...



Solução 2 .


A equação da reta é da forma y = ax +b . Use o dados do enunciado e expresse as equações das retas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Par de segmentos

Mensagempor Cleyson007 » Ter Ago 14, 2012 20:50

Boa noite Santhiago!

Vou trabalhar com a solução 2, parece-me mais fácil:

A = (0,1) e B = (-1,-1)

y = ax + b --> -2 = 0a + b e 2 = 2a + b --> y = 2x - 2 (Equação da reta AB)

C = (0,-2) e D = (2,2)

y = ax + b --> 1 = 0a + b e -1 = -a + b --> y = 2x + 1 (Equação da reta CD)

Como as retas possuem o mesmo coeficiente angular (m = 2), logo são paralelas.

Santhiago, gostaria de saber, se somente pelo fato de possuirem o mesmo coeficiente angular posso afirmar que são paralelas.

Aguardo retorno.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Par de segmentos

Mensagempor e8group » Ter Ago 14, 2012 21:41

Boa noite ,
Cleyson007 escreveu:Santhiago, gostaria de saber, se somente pelo fato de possuirem o mesmo coeficiente angular posso afirmar que são paralelas.

Aguardo retorno.


Sim .


Na minha opinião ,uma outra forma de verificar se a as retas são paralelas é analisar se as componentes dos vetores diretores são proporcionais entre-si ,isto é :

(utilizando o enunciado como exemplo)

\overrightarrow{AB} = \alpha \overrightarrow{DC} .

Perceba que pelos pontos dado no enunciado ,temos \overrightarrow {AB} = (2,4) e \overrightarrow{CD} =(-1,-2) .Como podemos ver é uma forma verificar se as retas são paralelas ,certo ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Par de segmentos

Mensagempor Cleyson007 » Qua Ago 15, 2012 18:00

Boa tarde,

correto Santhiago!

Obrigado pela atenção.

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.