• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Produto Escalar

[Geometria Analítica] Produto Escalar

Mensagempor felipe10 » Seg Ago 13, 2012 22:26

Tem dúvidas a seguinte questão:
- Demonstrar que sendo o vetor u, o vetor v e o vetor w vetores dois a dois ortogonais, então:
| u + v + w| = |u|² + |v|² + |w|²

u é ortogonal a v, e v é ortogonal a w???? pois assim nao consigo provar...
felipe10
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qui Mai 03, 2012 18:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Ambiental e Sanitária
Andamento: cursando

Re: [Geometria Analítica] Produto Escalar

Mensagempor Russman » Seg Ago 13, 2012 23:17

Os 3 são ortogonais entre si, como os canônicos!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Geometria Analítica] Produto Escalar

Mensagempor MarceloFantini » Ter Ago 14, 2012 00:42

Isto significa que \langle u, v \rangle = \langle u, w \rangle = \langle v, w \rangle = 0. Então

|u+v+w|^2 = \langle u+v+w, u+v+w \rangle

= \langle u, u \rangle + \langle u, v \rangle + \langle u, w \rangle + \langle v, v \rangle + \langle v,u \rangle + \langle v,w \rangle + \langle w, w \rangle + \langle w,u \rangle + \langle w, v \rangle

= |u|^2 + |v|^2 + |w|^2 + 2(\langle u,v \rangle + \langle u,w \rangle + \langle v, w \rangle).

Como eles são ortogonais dois a dois, então a segunda parte zera. Ou seja, acho que você esqueceu um quadrado no primeiro módulo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}