• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Elipse

Elipse

Mensagempor Jose Vicente » Sáb Jun 30, 2012 16:16

Relativamente à elipse de equação x²/25 + y²/b² = 1 ,com b < 5 ,julgue como verdadeiro ou falso a alternativa abaixo:

Se b =?5 ,então mER tal que a reta y=mx+1 é tangente à elipse.


Obrigado por quem me respondeu a pergunta anterior!Mas eu estava me esquecendo dessa,que também não estou conseguindo fazer!Me ajudem por favor!
Jose Vicente
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jun 30, 2012 00:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Elipse

Mensagempor LuizAquino » Dom Jul 01, 2012 10:36

Jose Vicente escreveu:Relativamente à elipse de equação x²/25 + y²/b² = 1 ,com b < 5 ,julgue como verdadeiro ou falso a alternativa abaixo:

Se b =?5 ,então mER tal que a reta y=mx+1 é tangente à elipse.



Eu presumo que você esqueceu de digitar alguma coisa do enunciado do exercício. Ele dever ser algo como: "Se b=\sqrt{5} , então existe m \in \mathbb{R} tal que a reta y=mx+1 é tangente à elipse". Se o texto original for como esse, note que você esqueceu de escrever a palavra "existe".

Quanto a resolução desse exercício, primeiro leia os seguintes tópicos:

Elipse
viewtopic.php?f=117&t=8483

Parábola
viewtopic.php?f=117&t=8748

Após ler esses tópicos, tente fazer o seu exercício. Se você não conseguir terminá-lo, então poste aqui até onde conseguiu avançar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Elipse

Mensagempor Jose Vicente » Ter Jul 03, 2012 14:36

Sobre a questão da Elipse,eu cheguei até o seguinte:
x²/25 + y²/5 = 1 se y=mx+1 então y - mx = 1 Substituindo:

x²/25 + y²/5 = y - mx

estou fazendo certo?Por que pensei em outras maneiras,mas com três incognitas ficou difícil saber se é tangente...
Jose Vicente
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Jun 30, 2012 00:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Elipse

Mensagempor LuizAquino » Ter Jul 03, 2012 19:34

Jose Vicente escreveu:Sobre a questão da Elipse,eu cheguei até o seguinte:
x²/25 + y²/5 = 1 se y=mx+1 então y - mx = 1 Substituindo:

x²/25 + y²/5 = y - mx

estou fazendo certo?Por que pensei em outras maneiras,mas com três incognitas ficou difícil saber se é tangente...


Da equação da reta você tem que y = mx + 1. Basta então substituir esse "y" na equação da elipse:

\frac{x^2}{25} + \frac{(mx + 1)^2}{5} = 1

Agora tente continuar a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.