• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria paralelogramo] Ajuda questões

[Geometria paralelogramo] Ajuda questões

Mensagempor imabr » Dom Jun 24, 2012 23:12

Gostaria que alguém me ajudasse a resolver a seguinte questão

Dados os pontos A (?3,4) , B (?1,3) , C (2,1) e D(5,4):

1) Escreva as equações paramétricas e cartesiana de cada uma das retas (t e s) que contém as
diagonais do paralelogramo definido por u-> e v-> .

2) Considere os pontos A(?2, 3?/4) B(?3, -?/6) C(2, ?) para cada um deles:
a. Determine as outras três possíveis representações em coordenadas polares.
b. Escreva sua representação em coordenada cartesiana.


Obrigado
imabr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 22, 2012 22:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecanica
Andamento: cursando

Re: [Geometria paralelogramo] Ajuda questões

Mensagempor MarceloFantini » Seg Jun 25, 2012 01:29

O que você tentou?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.