• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cônicas] problemas envolvendo rotação e translação

[Cônicas] problemas envolvendo rotação e translação

Mensagempor GuilhermeOliveira » Dom Jun 24, 2012 22:54

Olá.
Estou com bastante dificuldades em resolver o seguinte problema:

Considere a cônica cuja equação é dada por
8{x}^{2}-16xy+8{y}^{2}+\sqrt[]{2}x+\sqrt[]{2}y=0
(a) Encontre mudanças apropriadas de coordenadas (rotação e/ou translação),
de modo que a equação resultante fique na forma canônica (padrão).
(b) Identifique a curva.

Minhas dificuldades:
[*]basicamente desenvolvimento do processo (preferencialmente de forma objetiva)
[*]saber quando a figura formada pode ser rotacionada e quando ela pode ser transladada
[*]como colocar equação resultante em uma base ( no caso na forma canônica)
[*]quais os fatores que determinam em qual sentido estarão os vetores encontrados que formarão o novo sistema de cordenadas (novo sistema devido a rotação)
[*]como definir quais são os vetores que representarão qual eixo (x e y) no novo sistema de cordenadas encontrados


Meu professor de gaal não é dos melhores, ele tá bem velhinho e, infelizmente, não está mais em condições de me ensinar da forma como eu gostaria. Em breve vou fazer uma prova dessa matéria e não sei muita coisa ainda, então, tenho que estudar basicamente sozinho.
Muito obrigado pela ajuda.
GuilhermeOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Jun 24, 2012 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: ciência da computação
Andamento: cursando

Re: [Cônicas] problemas envolvendo rotação e translação

Mensagempor LuizAquino » Seg Jun 25, 2012 17:17

GuilhermeOliveira escreveu:Olá.
Estou com bastante dificuldades em resolver o seguinte problema:

Considere a cônica cuja equação é dada por
8{x}^{2}-16xy+8{y}^{2}+\sqrt[]{2}x+\sqrt[]{2}y=0
(a) Encontre mudanças apropriadas de coordenadas (rotação e/ou translação),
de modo que a equação resultante fique na forma canônica (padrão).
(b) Identifique a curva.

Minhas dificuldades:
[*]basicamente desenvolvimento do processo (preferencialmente de forma objetiva)
[*]saber quando a figura formada pode ser rotacionada e quando ela pode ser transladada
[*]como colocar equação resultante em uma base ( no caso na forma canônica)
[*]quais os fatores que determinam em qual sentido estarão os vetores encontrados que formarão o novo sistema de cordenadas (novo sistema devido a rotação)
[*]como definir quais são os vetores que representarão qual eixo (x e y) no novo sistema de cordenadas encontrados


Pelo que analiso em suas dificuldades, ao que parece você não sabe nem iniciar o exercício.

Nesse contexto, eu recomendo que primeiro você procure ler sobre esse assunto. Por exemplo, vide o seguinte livro:

Boulos, Paulo; Camargo, Ivan. Geometria Analítica: um tratamento vetorial. 3a ed., São Paulo, Pearson Education, 2005.

Nesse livro há vários exercícios resolvidos exibindo o passo a passo de como efetuar a translação e a rotação nas cônicas.

Depois que você fizer essa leitura, se você permanecer com dúvidas em alguma parte, então poste aqui até onde você conseguiu avançar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}