• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parábola

Parábola

Mensagempor CarolMarques » Qui Mai 24, 2012 10:54

São dados o foco e a diretriz de uma parábola.Obtenha uma equação algébrica de segunda grau em x e y que todo ponto (x,y) da parabola deva satisfazer.
F(-4,-2)
r:2x+y=3

Eu percebi q a equação vai ter um termo quadrado misto (Bxy) mas não sei como fazer para chegar a equação.Não sei como aplicar os conceitos de rotação e translação a esse caso.Por favor me ajudem.
CarolMarques
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qui Mai 03, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Parábola

Mensagempor LuizAquino » Sex Mai 25, 2012 13:08

CarolMarques escreveu:São dados o foco e a diretriz de uma parábola.Obtenha uma equação algébrica de segunda grau em x e y que todo ponto (x,y) da parabola deva satisfazer.
F(-4,-2)
r:2x+y=3


CarolMarques escreveu:Eu percebi q a equação vai ter um termo quadrado misto (Bxy) mas não sei como fazer para chegar a equação. Não sei como aplicar os conceitos de rotação e translação a esse caso. Por favor me ajudem.


Resolver esse exercício aplicando rotações e translações é um caminho longo. Você não precisa segui-lo. É mais interessante aplicar a definição de parábola.

Sabemos que a parábola é o conjunto dos pontos no plano que são equidistantes a um ponto fixo (chamado de foco) e uma reta fixa (chamada de diretriz).

Sendo assim, considerando que P = (x, y) é um ponto dessa parábola, temos que d(P, F) = d(P, r). Usando então a fórmula para distância entre pontos e a fórmula para a distância entre ponto e reta, temos que:

\sqrt{[x -(-4)]^2 + [y -(-2)]^2} = \frac{|2x + y - 3|}{\sqrt{2^2 + 1^2}}

Agora tente concluir o exercício. Se você não conseguir, então poste aqui até onde você conseguiu avançar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Parábola

Mensagempor CarolMarques » Sex Mai 25, 2012 16:16

Consegui resolver!Muito Obrigada!
CarolMarques
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qui Mai 03, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}