Calcular o valor de m para que as retas r e s sejam coplanares:
r: y = 2x + 3 e z = 3x - 1
s: (x-1)/2 = y/(-1) = z/m
Quem souber, por favor dê uma ajudinha... obrigada!!

manuoliveira escreveu:Calcular o valor de m para que as retas r e s sejam coplanares:
r: y = 2x + 3 e z = 3x - 1
s: (x-1)/2 = y/(-1) = z/m
.
.
e
terão direções diferentes. Portanto, as retas r e s podem ser: reversas ou concorrentes.




Voltar para Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)