• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas

Retas

Mensagempor manuoliveira » Qua Mai 23, 2012 16:28

Calcular o valor de m para que as retas r e s sejam coplanares:
r: y = 2x + 3 e z = 3x - 1
s: (x-1)/2 = y/(-1) = z/m

Quem souber, por favor dê uma ajudinha... obrigada!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Retas

Mensagempor LuizAquino » Qua Mai 23, 2012 20:44

manuoliveira escreveu:Calcular o valor de m para que as retas r e s sejam coplanares:
r: y = 2x + 3 e z = 3x - 1
s: (x-1)/2 = y/(-1) = z/m


Você precisa começar determinando os vetores diretores das retas.

Um vetor diretor de s é fácil perceber que é \vec{d_s} = (2,\,-1,\,m) .

Já para perceber o vetor diretor de r, vamos fazer x = t e montar as seguintes equações paramétricas:

r:\begin{cases}
x = t \\
y = 3 + 2t \\
z = -1 + 3t
\end{cases}

Desse modo, um vetor diretor para a reta r será \vec{d_r} = (1,\,2,\,3) .

Note que para qualquer valor de m, sempre os vetores \vec{d_r} e \vec{d_s} terão direções diferentes. Portanto, as retas r e s podem ser: reversas ou concorrentes.

Se elas forem reversas, então elas não são coplanares.

Mas se elas forem concorrentes, então elas serão complanares. Esse é o caso que nos interessa.

Ora, para que elas sejam concorrentes deve haver um ponto de interseção. Ou seja, deve existir um ponto P = (a, b, c) tal que:

\begin{cases}
b = 2a + 3 \\
c = 3a - 1 \\
\frac{a-1}{2} = \frac{b}{-1} = \frac{c}{m}
\end{cases}

Substituindo b e c na terceira equação, ficamos com:

\frac{a-1}{2} = \frac{2a+3}{-1} = \frac{3a-1}{m}

Considerando a primeira parte dessa equação, temos que:

\frac{a-1}{2} = \frac{2a+3}{-1} \implies a - 1 = -4a -6 \implies a = -1

Considerando agora a última parte dessa equação, já substituindo a = -1, temos que:

\frac{-2 + 3}{-1} = \frac{-3-1}{m} \implies m = 4

Portanto, para m = 4 teremos as retas r e s complanares e concorrentes, sendo que o ponto de interseção será P = (-1, 1, -4).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59