• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Hiperbole

Hiperbole

Mensagempor Schimuneck » Seg Mai 30, 2011 10:21

Bom dia galera,

Estou estudando hipérboles e me surgiu um problema. Esta fazendo exercícios onde eu tinha os focos e o eixo real, ou então os vértices e os focos, etc. Enfim, peguei um exercício onde o enunciado me da os vértices e um ponto onde passa a hipérbole. Ai começou meu problema, não sei como sair dai, preciso determinar a equação dela com essas informações. Alguém teria uma dica de como posso fazer isso?

Aqui o exercício que me gerou esta duvida:
Numa hipérbole, os vértices são V1(4,0) e V2 (-4,0). Determine a equação dessa hipérbole, sabendo que ela passa pelo ponto P (8,2).

Agradeço qualquer ajuda ou dica.
Obrigado.
Schimuneck
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Mai 30, 2011 10:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da Computação
Andamento: cursando

Re: Hiperbole

Mensagempor DanielFerreira » Sáb Mai 19, 2012 14:29

Temos os vértices da hipérbole, então podemos determinar o valor de "a":
(4, 0) e (- 4,0), veja

\frac{4 - (- 4)}{2} = 4 ====> a = 4

Como a hipérbole está no eixo x, ela é dada por \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

Temos um ponto, então podemos susbtituí-lo na equação da hipérbole, veja:

\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

\frac{8^2}{4^2} - \frac{2^2}{b^2} = 1

4 - \frac{4}{b^2} = 1

\frac{4}{b^2} = 3

b^2 = \frac{4}{3}

Então,

\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

\frac{x^2}{16} - \frac{3y^2}{4} = 1
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.