• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Vetores que geram R3]

[Vetores que geram R3]

Mensagempor elizabethec » Dom Mai 13, 2012 22:40

Preciso determinar se v1=(1,2,6), v2=(3,4,1), v3=(4,3,1), v4=(3,3,1) geram R3.
Eu sei que para gerar o R3 os vetores presisam formar uma combinaçao linear, e com o determinante dos ceficientes eu consigo dizer se gera ou nao gera o R3, mas nesse exercicio acima nao consigo fazer por determinate como eu faço?
elizabethec
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 13, 2012 20:22
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Vetores que geram R3]

Mensagempor LuizAquino » Seg Mai 14, 2012 14:38

elizabethec escreveu:Preciso determinar se v1=(1,2,6), v2=(3,4,1), v3=(4,3,1), v4=(3,3,1) geram R3.
Eu sei que para gerar o R3 os vetores presisam formar uma combinaçao linear, e com o determinante dos ceficientes eu consigo dizer se gera ou nao gera o R3, mas nesse exercicio acima nao consigo fazer por determinate como eu faço?


Seja um vetor \vec{u}=(x,\,y,\,z) em \mathbb{R}^3. Deseja-se verificar se existem escalares a, b, c e d tais que:

(x, y, z) = a(1, 2, 6) + b(3, 4, 1) + c(4, 3, 1) + d(3, 3, 1)

Ou seja, temos o sistema:

\begin{cases}
a + 3b + 4c + 3d = x \\
2a + 4b + 3c + 3d = y \\
6a + b + c + d = z
\end{cases}

Esse sistema possui quatro incógnitas (a, b, c e d) e três equações. Ele pode ser impossível ou ele pode ser possível e indeterminado.

Vamos isolar a variável d na última equação e substituí-la nas outas duas. Ficamos apenas com:

\begin{cases}
-17a + c = x - 3z\\
-16a + b = y - 3z
\end{cases}

Temos então que:
b = y - 3z + 16a
c = x - 3z + 17a
d = 7z - x - y - 39a

Note que a incógnita a é livre. Temos então infinitas soluções (ou seja, um sistema possível e indeterminado). Isso significa que existem escalares a, b, c e d que atendem a combinação linear.

Em particular, para a = 1, temos que:
b = y - 3z + 16
c = x - 3z + 17
d = 7z - x - y - 39

Sendo assim, podemos dizer que:

(x, y, z) = 1(1, 2, 6) + (y - 3z + 16)(3, 4, 1) + (x - 3z + 17)(4, 3, 1) + (7z - x - y - 39)(3, 3, 1)

Temos então que {(1, 2, 6), (3, 4, 1), (4, 3, 1), (3, 3, 1)} é um gerador de \mathbb{R}^3 .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.