• Anúncio Global
    Respostas
    Exibições
    Última mensagem

produto vetorial ( calculo da area)

produto vetorial ( calculo da area)

Mensagempor ubelima » Sáb Abr 28, 2012 09:39

Ola, estou com dificuldade em determinar a area de um triangulo. a questão apresentam um triângulo ABC com seus pontos medios M(0,1,3), N(3,-2,2) e P(1,0,2).

Desenhei o triangulo, relacionei os dados com diversa formulas, mas sem sucesso.

Se alguem puder me orientar, agradeço o apoio.
ubelima
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Abr 28, 2012 09:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: produto vetorial ( calculo da area)

Mensagempor Guill » Sáb Abr 28, 2012 10:05

Primeiramente, sabemos que o triângulo ABC é compostro por três lados, AB, BC e AC. Sabemos também que a área de um triângulo é a metade do produto da base pela altura.

Uma vez que temos os pontos médios dos lados como:

M = (0 ; 1 ; 3) ---> Ponto médio de AB
N = (3 ; -2 ; 2) ---> Ponto médio de AC
P = (1 ; 0 ; 2) ---> Ponto médio de BC


Suponhamos os vetores A, B e C tais que:

A = ({a}_{1} ; {a}_{2} ; {a}_{3})

B = ({b}_{1} ; {b}_{2} ; {b}_{3})

C = ({c}_{1} ; {c}_{2} ; {c}_{3})


Fica claro que:

AB = ({a}_{1}-{b}_{1} ; {a}_{2}-{b}_{2} ; {a}_{3}-{b}_{3})=(0;2;6)

AC = ({a}_{1}-{c}_{1} ; {a}_{2}-{c}_{2} ; {a}_{3}-{c}_{3})=(6;-4;4)

BC = ({b}_{1}-{c}_{1} ; {b}_{2}-{c}_{2} ; {b}_{3}-{c}_{3})=(2;0;4)


Resolvendo o sistema por igualdade de vetores, encontraremos todos os valores dos vetores. Depois disso, basta calcular o comprimento de cada um dos lados desse triângulo e usar a relação:

Área = \sqrt[]{p(p-a)(p-b)(p-c)}

Onde p é o semiperímetro e a, b e c são os lados do triâgulo.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59