• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria analitica - vertices do triangulo

Geometria analitica - vertices do triangulo

Mensagempor Dayannearaujo » Qui Abr 19, 2012 17:21

a questão é a seguinte: Dois vértices de um triangulo são A(4,1) e B(10,4). Determine as coordenadas do terceiro ponto sabendo que a area é 36,6 e que o trinagulo é retangulo.

eu consegui fazer uma parte do exercicio:

AB * AC

(10-4)i + (4-1)j * (x-4)i + (y-1)j
6i*(x-4)i + 3j*(y-1)j
6x+3y-27 = 0 ---> primeira equação

resolve-se a matriz:
i j k
6 3 0
x-4 y-1 0, obtendo-se: k*(6y-6) - (3x - 12)

agora eu não consegui sair dai, sei que tem q elevar ao quadrado, mas nao sei por onde começar! me ajudeeem! esse trabalho é pra amanha, vale bem nota! :/

obrigada.
Dayannearaujo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 19, 2012 17:10
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: Geometria analitica - vertices do triangulo

Mensagempor LuizAquino » Sex Abr 20, 2012 00:07

Dayannearaujo escreveu:a questão é a seguinte: Dois vértices de um triangulo são A(4,1) e B(10,4). Determine as coordenadas do terceiro ponto sabendo que a area é 36,6 e que o trinagulo é retangulo.


Dayannearaujo escreveu:eu consegui fazer uma parte do exercicio:

AB * AC

(10-4)i + (4-1)j * (x-4)i + (y-1)j
6i*(x-4)i + 3j*(y-1)j
6x+3y-27 = 0 ---> primeira equação


Nesse caso, você está considerando que o ângulo reto está no vértice A. Como o exercício não especificou em qual vértice esse ângulo está, então na verdade a resolução deveria ser dividida em três casos: ângulo reto em A; ângulo reto em B; ângulo reto em C.

Dayannearaujo escreveu:resolve-se a matriz:
i j k
6 3 0
x-4 y-1 0, obtendo-se: k*(6y-6) - (3x - 12)


Você sabe que a área do triângulo ABC é 36,6. Além disso, você também sabe que essa área é igual a \frac{1}{2}\left\|\overrightarrow{AB}\times\overrightarrow{AC}\right\| .

Sendo assim, temos que:

\frac{1}{2}\sqrt{0^2 + 0^2 + [(6y-6) - (3x - 12)]^2} = 36,6

\sqrt{(6y - 3x + 6)^2} = 73,2

|6y - 3x + 6| = 73,2

Desse modo, você precisa resolver o sistema:

\begin{cases}
6x + 3y - 27 = 0 \\
|6y - 3x + 6| = 73,2
\end{cases}

Esse sistema pode ser dividido em dois casos.

Caso 1) 6y - 3x + 6 \geq 0

\begin{cases}
6x + 3y - 27 = 0 \\
6y - 3x + 6 = 73,2
\end{cases}

Caso 2) 6y - 3x + 6 < 0

\begin{cases}
6x + 3y - 27 = 0 \\
-(6y - 3x + 6) = 73,2
\end{cases}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.