• Anúncio Global
    Respostas
    Exibições
    Última mensagem

vector

vector

Mensagempor stuart clark » Seg Abr 09, 2012 12:16

If \vec{a}\;\;,\vec{b} and \vec{c} are three vectors such that

\mid \vec{a} \mid = \mid \vec{b} \mid  = \mid \vec{c} \mid  = 1 and \mid \vec{a}-\vec{b}\mid^2+\mid\vec{b}-\vec{c}\mid^2+\mid\vec{c}-\vec{a}\mid^2 = 9

then \mid 2\vec{a}+5\vec{b}+5\vec{c}\mid  =
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: vector

Mensagempor stuart clark » Seg Abr 09, 2012 12:19

I have Tried like in this way

\mid \vec{a}-\vec{b}\mid^2+\mid\vec{b}-\vec{c}\mid^2+\mid\vec{c}-\vec{a}\mid^2 = 9

6-2.\left(\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}\right) = 9

\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a} = -\frac{3}{2}
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: vector

Mensagempor stuart clark » Qua Abr 11, 2012 23:44

Thanks Moderator Got it

\mid \vec{a}+\vec{b}+\vec{c} \mid^2 = \left(\vec{a}+\vec{b}+\vec{c}\right).\left(\vec{a}+\vec{b}+\vec{c}\right) = 0

So \vec{a}+\vec{b}+\vec{c} = 0\Leftrightarrow \vec{b}+\vec{c} = -\vec{a}

So \mid 2\vec{a}+5(\vec{b}+\vec{c})\mid = 3\mid \vec{a} \mid = 3
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: vector

Mensagempor LuizAquino » Qui Abr 12, 2012 11:13

stuart clark escreveu:Thanks Moderator Got it

\mid \vec{a}+\vec{b}+\vec{c} \mid^2 = \left(\vec{a}+\vec{b}+\vec{c}\right).\left(\vec{a}+\vec{b}+\vec{c}\right) = 0

So \vec{a}+\vec{b}+\vec{c} = 0\Leftrightarrow \vec{b}+\vec{c} = -\vec{a}

So \mid 2\vec{a}+5(\vec{b}+\vec{c})\mid = 3\mid \vec{a} \mid = 3


Ok.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}