• Anúncio Global
    Respostas
    Exibições
    Última mensagem

distancia

distancia

Mensagempor alfabeta » Sáb Mar 03, 2012 00:03

Três pontos de coordenadas,respectivamente (0, 0) (b, 2b), e (5b, 0) com b>0 são vértices de um retângulo.
As coordenadas do quarto vértice são dadas por:]
Gabarito: 4b, - 2b.

como faço para aplicar a formula da distancia ou nao precisa?
alfabeta
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Ter Fev 28, 2012 11:37
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: distancia

Mensagempor timoteo » Sáb Mar 03, 2012 02:58

alfa, nesse caso nao ha necessidade de utilizar a formula de distancia.

traçe o grafico e sabendo que é um retangulo é so estabeleçer o ultimo ponto que no caso é o indicado pelo gabarito.
timoteo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 117
Registrado em: Ter Fev 14, 2012 07:07
Formação Escolar: GRADUAÇÃO
Área/Curso: bacharel matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.