• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equaçoes parametricas

Equaçoes parametricas

Mensagempor angels900 » Ter Jan 31, 2012 14:35

  1. Escreva as equações paramétricas da reta r que passa pelos pontos N=(0,b) e Q=(u,0) do plano.
  2. Determine as coordenadas dos pontos de interseção da elipse E de equação \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 com a reta r obtida no item a.
  3. Escreva as equações paramétricas da reta s que passa pelo ponto N=(0,b) e pelo ponto P=(x,y) de E, com P\ne N.
  4. Para P=(x,y) \in E, com P\ne N, determine \ u, sendo Q=(u,0) o ponto de interseção da reta s, obtida no item c, com o eixo das abcissas.
  5. Mostre que a função \xi:E-\{N\}\rightarrow\mathbb R, definida por \xi(P)=u, com \ u obtido no item d, estabelece uma correspondência biunívoca entre E-\{N\} e \mathbb R.
  6. Determine a expressão de \xi^{-1}(u), sendo \xi^{-1}:\mathbb R\rightarrow E-\{N\} a função inversa da função \xi do item e.
angels900
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 30, 2012 05:02
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Equaçoes parametricas

Mensagempor LuizAquino » Ter Jan 31, 2012 14:42

angels900,

Por favor, poste as suas tentativas e indique exatamente onde está a sua dúvida.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equaçoes parametricas

Mensagempor angels900 » Ter Jan 31, 2012 14:54

eu acho que a reta eh
y= \dfrac{-b}{u} x + b
mas nao sei oque eh equacao parametrica entao parei ae
angels900
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 30, 2012 05:02
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Equaçoes parametricas

Mensagempor LuizAquino » Ter Jan 31, 2012 14:57

angels900 escreveu:mas nao sei oque eh equacao parametrica entao parei ae


Leia a página abaixo e tente terminar.

Equações paramétricas
http://www.mundoeducacao.com.br/matemat ... tricas.htm
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equaçoes parametricas

Mensagempor angels900 » Ter Jan 31, 2012 15:01

mas a reta eh essa mesmo?
angels900
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 30, 2012 05:02
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Equaçoes parametricas

Mensagempor angels900 » Ter Jan 31, 2012 15:21

quais sao as equacoes parametricas desta equacao
y=\dfrac{-b}{u}x+b
nao entendi como achar
angels900
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Jan 30, 2012 05:02
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Equaçoes parametricas

Mensagempor LuizAquino » Ter Jan 31, 2012 17:04

angels900 escreveu:mas a reta eh essa mesmo?

eu acho que a reta eh
y= \dfrac{-b}{u} x + b


Sim, esta é a reta do item a).

angels900 escreveu:quais sao as equacoes parametricas desta equacao
y= \dfrac{-b}{u} x + b
nao entendi como achar


Comece chamando x de t. Isto é, faça a substituição x=t. Desse modo, temos que y=\frac{-b}{u}t+b .

Portanto, uma equação paramétrica dessa reta é dada por:

\begin{cases}
x = t \\
\\
y = \frac{-b}{u}t + b
\end{cases}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59