por Gabi 15 » Seg Nov 14, 2011 11:24
tenho 1 exercício na minh apostila que nao sei fazer, que pede a equação da f(x) do 2º grau. consegui fazer os exercícios em que a é igual a 0 mas, creio que nesse exercício que tntei fazer a é diferented e 0.
Dado o gráfico cartesiano de f(x) = ax² + bx + c, determine f(x)
ai tem um gráfico que a parábola tem ponto mínimo (parábola parecida com um U) sendo que no y corta em 6 e no x corta em 1 em 2. alguém poderia me ajudar, por favor?
-
Gabi 15
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Nov 14, 2011 11:15
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por joaofonseca » Seg Nov 14, 2011 12:20
Uma da formas em que uma função quadratica se pode apresentar é:

Em que

e

são as raizes.
Assim:

Agora desenvolve-se, depois substitui-se
y e
x pelos valores de um qualquer par ordenado conhecido e resolve-se em ordem a
a.No final escreve-se a expressão na sua forma canonica.
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por MarceloFantini » Seg Nov 14, 2011 19:15
Sem o gráfico não há muito que possamos fazer.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por joaofonseca » Seg Nov 14, 2011 22:05
-
joaofonseca
- Colaborador Voluntário

-
- Mensagens: 196
- Registrado em: Sáb Abr 30, 2011 12:25
- Localização: Lisboa
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação da parábola
por carolina camargo » Dom Nov 22, 2009 13:12
- 2 Respostas
- 4699 Exibições
- Última mensagem por carolina camargo

Dom Nov 22, 2009 14:18
Geometria Analítica
-
- equação de uma parábola
por Ana Maria da Silva » Sex Jun 14, 2013 19:11
- 1 Respostas
- 1107 Exibições
- Última mensagem por Ana Maria da Silva

Sex Jun 21, 2013 16:03
Geometria Analítica
-
- cônicas:equação da parabola
por may » Ter Jul 12, 2011 21:35
- 2 Respostas
- 11302 Exibições
- Última mensagem por may

Sex Jul 15, 2011 00:46
Geometria Analítica
-
- [Determinar equação da Parábola]
por aliceleite » Ter Set 04, 2012 20:20
- 1 Respostas
- 1433 Exibições
- Última mensagem por Russman

Qua Set 05, 2012 01:31
Funções
-
- [conica] achar a equação da parábola
por Ge_dutra » Sáb Mar 16, 2013 21:47
- 4 Respostas
- 3108 Exibições
- Última mensagem por Ge_dutra

Qua Abr 03, 2013 00:06
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.