por lucat28 » Sex Set 16, 2011 19:08
Iai galera,
o problema é essa seguinte questão:
Achar as equações paramétricas de acordo com a figura:

De:
A e B
C e D
A e D
B e C
D e E
B e D
Daí achei os pontos A(2,0,4) B(0,0,4) C(0,3,0) D(2,3,0) E(2,0,0)
para encontrar a equação paramétrica eu fiz o seguinte
A-B = (2,0,4)-(0,0,4) = (2,0,0)
Eq. paramétrica de A e B-> X= 2+2t// Y=0 Z=4
C-D= (0,3,0)-(2,3,0)= (-2,0,0)
Eq paramétrica de C e D -> X= -2t // Y= 3 // Z= 0 ==> Só que no gabarito o valor de X é igual a 2t
A-D= (2,0,4)-(2,3,0) = (0,-3,4)
Eq paramétrica de C e D-> X= 2// Y= -3t // Z= 4+4t ===> Só que no gabarito o valor de Y = 3t e Z=4-4t.
Resumindo... Nessa questão, estou fazendo o seguinte método: Subtraio o primeiro ponto pelo segundo e depois jogo na fórmula da paramétrica, acontece que o resultado só bate certo se tiver o ponto B, caso contrário tenho que inverter, subtrair o segundo com o primeiro ponto, para o resultado dar igual ao gabarito.
A minha dúvida é essa..
Espero que tenham entendido.
http://imageshack.us/photo/my-images/58 ... log33.jpg/ o link da figura que tem na questão.
desde já obrigado.
-
lucat28
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Qua Mar 16, 2011 12:31
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equações cartesianas e equações paramétricas
por Victor Mello » Sáb Ago 23, 2014 16:24
- 1 Respostas
- 3309 Exibições
- Última mensagem por Russman

Sáb Ago 23, 2014 18:29
Funções
-
- [Equações do Plano] Geometria Analitica
por caique » Qui Abr 23, 2015 00:22
- 1 Respostas
- 3042 Exibições
- Última mensagem por DanielFerreira

Qua Abr 29, 2015 20:10
Geometria Analítica
-
- Equaçoes parametricas
por angels900 » Ter Jan 31, 2012 14:35
- 6 Respostas
- 3474 Exibições
- Última mensagem por LuizAquino

Ter Jan 31, 2012 17:04
Geometria Analítica
-
- [Geometria Analitica] Equações hipérbole e bissetriz
por temujin » Qui Mar 14, 2013 15:16
- 0 Respostas
- 626 Exibições
- Última mensagem por temujin

Qui Mar 14, 2013 15:16
Geometria Analítica
-
- [Equações de reta e plano - Geometria analítica]
por Gustavo195 » Dom Abr 07, 2013 10:41
- 2 Respostas
- 3592 Exibições
- Última mensagem por Gustavo195

Dom Abr 07, 2013 22:40
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.