• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Nova origem parábola] alguem pode me ajudar?

[Nova origem parábola] alguem pode me ajudar?

Mensagempor crynofhell » Qui Set 01, 2011 13:00

olha a questão está pedindo para identificar uma nova origem, no caso de uma parábola
e ela me da a seguinte questão x²-4x+y²-6y-12=0 eu respondi assim:

x²-4x+y²-6y-12=0
(x²-4x+4)+(y²-6y+9) = 12+4+9
(x-2)² + (y-3)² = 25
(x')² + (y')² = 25


ou seja minha nova origem ficou ( 2, 3 )
mais o gabarito informa que a nova origem é (1;1)
podem me ajudar aonde eu estou errando? obg!!
crynofhell
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 01, 2011 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: [Nova origem parábola] alguem pode me ajudar?

Mensagempor LuizAquino » Qui Set 01, 2011 15:45

crynofhell escreveu:olha a questão está pedindo para identificar uma nova origem, (...)

Ou seja, você deseja identificar o ponto para o qual deve-se fazer uma translação de modo a simplificar a equação da cônica. Eu presumo que seja isso que você quer dizer com "identificar uma nova origem".

crynofhell escreveu:(... )no caso de uma parábola e ela me da a seguinte questão x²-4x+y²-6y-12=0 (...)


Essa cônica não é uma parábola. Na verdade, é uma circunferência.

crynofhell escreveu:x² - 4x + y² - 6y - 12 = 0
(x² - 4x + 4) + (y² - 6y + 9) = 12 + 4 + 9
(x - 2)² + (y - 3)² = 25
(x')² + (y')² = 25

Isto está ok.

crynofhell escreveu:(...)
ou seja minha nova origem ficou ( 2, 3 )
mais o gabarito informa que a nova origem é (1;1)
podem me ajudar aonde eu estou errando?

Simples: o gabarito está errado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Nova origem parábola] alguem pode me ajudar?

Mensagempor crynofhell » Qui Set 01, 2011 16:03

obrigado... acho que desenvolvi corretamente a questão então.
crynofhell
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 01, 2011 12:57
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: