por crynofhell » Qui Set 01, 2011 13:00
olha a questão está pedindo para identificar uma nova origem, no caso de uma parábola
e ela me da a seguinte questão x²-4x+y²-6y-12=0 eu respondi assim:
x²-4x+y²-6y-12=0
(x²-4x+4)+(y²-6y+9) = 12+4+9
(x-2)² + (y-3)² = 25
(x')² + (y')² = 25
ou seja minha nova origem ficou ( 2, 3 )
mais o gabarito informa que a nova origem é (1;1)
podem me ajudar aonde eu estou errando? obg!!
-
crynofhell
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Set 01, 2011 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Qui Set 01, 2011 15:45
crynofhell escreveu:olha a questão está pedindo para identificar uma nova origem, (...)
Ou seja, você deseja identificar o ponto para o qual deve-se fazer uma translação de modo a simplificar a equação da cônica. Eu presumo que seja isso que você quer dizer com "identificar uma nova origem".
crynofhell escreveu:(... )no caso de uma parábola e ela me da a seguinte questão x²-4x+y²-6y-12=0 (...)
Essa cônica
não é uma parábola. Na verdade, é uma circunferência.
crynofhell escreveu:x² - 4x + y² - 6y - 12 = 0
(x² - 4x + 4) + (y² - 6y + 9) = 12 + 4 + 9
(x - 2)² + (y - 3)² = 25
(x')² + (y')² = 25
Isto está ok.
crynofhell escreveu:(...)
ou seja minha nova origem ficou ( 2, 3 )
mais o gabarito informa que a nova origem é (1;1)
podem me ajudar aonde eu estou errando?
Simples: o gabarito está errado.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por crynofhell » Qui Set 01, 2011 16:03
obrigado... acho que desenvolvi corretamente a questão então.
-
crynofhell
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Set 01, 2011 12:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Alguem pode ajudar-me?
por carlos r m oliveira » Seg Out 05, 2009 11:35
- 1 Respostas
- 2356 Exibições
- Última mensagem por Neperiano

Dom Jul 03, 2011 21:05
Estatística
-
- Alguém pode me ajudar?
por apoliveirarj » Seg Jul 19, 2010 18:20
- 1 Respostas
- 3213 Exibições
- Última mensagem por Douglasm

Seg Jul 19, 2010 18:49
Matemática Financeira
-
- Alguém pode me ajudar?
por Andromeda » Seg Set 19, 2011 20:19
- 2 Respostas
- 2234 Exibições
- Última mensagem por Andromeda

Seg Set 19, 2011 21:13
Trigonometria
-
- lim x^2.sin(x/1), x=0. Alguém pode me ajudar?
por Arthur_Bulcao » Seg Abr 09, 2012 18:05
- 2 Respostas
- 1842 Exibições
- Última mensagem por fraol

Seg Abr 09, 2012 19:24
Cálculo: Limites, Derivadas e Integrais
-
- Alguém pode me ajudar?
por Cleyson007 » Qui Out 11, 2012 09:18
- 2 Respostas
- 3875 Exibições
- Última mensagem por Cleyson007

Qui Out 11, 2012 11:38
Pedidos de Materiais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.