• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do triângulo

Área do triângulo

Mensagempor -civil- » Qua Ago 10, 2011 22:41

Boulos - 3 ª ed. - Cap. 18

18-17) Considere as retas r: X= (1,1,0) + \lambda(0,1,1) e s: (x-1)/2 = y = z. Sejam A o ponto de intersecção de s com o plano \pi, e B e C, respectivamente, os pontos em que r intercepta Oxz e O xy. Calule a área do triângulo ABC (SO), nos casos:

(a) \pi: x - y + z = 2


Fazendo a intersecção de s e \pi, encontrei o ponto A = (2, \frac{1}{2}, \frac{1}{2})

Fazendo a intersecção entre r e Oxz
\pi_1: X = (0,0,0) + \gamma(1,0,0) + \alpha(0,01)
1 = \gamma
1 + \lambda = 0
\lambda = \alpha
\lambda = -1, \alpha = -1, \gamma = 1
B = (1, 0, -1)

\pi_2: X = (0,0,0) + \beta(1,0,0) + \theta(0,1,0)
1 = \beta
1 + \theta = 0
\lambda = 0
C = (1,1,0)

Usando os três pontos para calcular o determinante, cheguei que o determinante é igual a 2 e a área será 1. Mas o resultado do livro é \sqrt{\frac{3}{2}}. O que tem de errado na minha resolução.
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Área do triângulo

Mensagempor LuizAquino » Sex Ago 12, 2011 13:05

Note que:
\vec{BA} = \left(1,\,\frac{1}{2},\,\frac{3}{2}\right)

\vec{BC} = \left(0,\,1,\,1\right)

Desse modo, \vec{BA}\times \vec{BC} = (-1, -1, 1) .

Para cacular a área de ABC basta tomar \frac{1}{2}||\vec{BA}\times \vec{BC}|| .

-civil- escreveu:Mas o resultado do livro é \sqrt{\frac{3}{2}}. O que tem de errado na minha resolução.

Na verdade, o resultado é \frac{\sqrt{3}}{2} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: