• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano Cartesiano Bidimensional

Plano Cartesiano Bidimensional

Mensagempor vanessafey » Dom Jul 10, 2011 14:24

Tenho o seguinte problema para resolver:

Dados os pontos A e B do plano cartesiano bidimensional, determine a figura geométrica gerada por um ponto P, que se move neste plano, de tal modo que é constante a razão entre as distâncias de P a A e de P a B. Justifique a sua resposta analiticamente. Sugestão: Use A(0,0) e B(b, 0) com b>0.

Não consigo nem iniciá-lo, alguém pode me dar um "empurrãozinho"?

Obrigada
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Plano Cartesiano Bidimensional

Mensagempor MarceloFantini » Seg Jul 11, 2011 03:20

Use a definição dada. Seja P um ponto genérico (x,y). Usando a sugestão do exercício e a definição, temos que \frac{d_{PA}}{d_{PB}} = k \iff \frac{\sqrt{x^2 +y^2}}{\sqrt{(x-b)^2 +y^2}} = k \iff \sqrt{x^2 +y^2} = k \sqrt{(x-b)^2 +y^2}

Agora faça as contas restantes e tente encontrar o que significa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}