• Anúncio Global
    Respostas
    Exibições
    Última mensagem

coeficiente angular

coeficiente angular

Mensagempor alexsandrob13 » Seg Mai 16, 2011 22:02

olá pessoal, por favor quem poder me ajudar, ajuder ai obrigado des de já

Determine o coeficiente angular Mr, e a inclinação ? da reta r que passa pelos pontos A e Bseguintes:
a) A(-1, 1) e B(3,-3)
b) A(2, 2Raiz quadrada de 3) B(1, Raiz quadrada de 3)
c) A (5, raiz quadrada de 3) e B(2,0)


AJUDAR PESSOAL POR FAVOR!!!!!
alexsandrob13
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mai 16, 2011 21:46
Formação Escolar: ENSINO MÉDIO
Área/Curso: computador
Andamento: cursando

Re: coeficiente angular

Mensagempor Molina » Seg Mai 16, 2011 22:32

Boa noite, Alexandre.

Com a explicação dada aqui você já conseguirá responder esses 3 itens. Qualquer dúvida informe!


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.