• Anúncio Global
    Respostas
    Exibições
    Última mensagem

relaçoes metricas na circuferencia

relaçoes metricas na circuferencia

Mensagempor stanley tiago » Seg Abr 11, 2011 18:37

Determine X , para:

a) R = 8 cm


ci.GIF
ci.GIF (2.6 KiB) Exibido 1908 vezes




d= 2.r -------- d = 16 --------- d = x+m ----------- x=16-m


12^2 = h^2 + (16-m)----144 = h^2 + 256 -32m+m^2


bom pessoal isso foi tudo q eu consegui fazer , conto com a colaboraçao de vcs !
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: relaçoes metricas na circuferencia

Mensagempor FilipeCaceres » Seg Abr 11, 2011 20:31

relacoes_metricas.GIF
relacoes_metricas.GIF (2.46 KiB) Exibido 1901 vezes


Fazendo semelhança de triângulo, temos:

\Delta ABC \sim \Delta DBA \left\{\begin{matrix}
\frac{a}{c} &= \frac{b}{h} &\Rightarrow   & bc & = &ah  &(1) \\ 
\frac{a}{c} &= \frac{c}{m} &\Rightarrow   & c^2 & = &am  &(2) \\ 
\frac{b}{h} &= \frac{c}{m} &\Rightarrow   & ch & = &bm  &(3) \\ 
\end{matrix}\right.

\Delta ABC \sim \Delta DAC \left\{\begin{matrix}
\frac{a}{b} &= \frac{b}{n} &\Rightarrow   & b^2 & = &an  &(4) \\ 
\frac{a}{b} &= \frac{c}{h} &\Rightarrow   & bc & = &ah  &(1) \\ 
\frac{b}{n} &= \frac{c}{h} &\Rightarrow   & bh & = &cn  &(5) \\ 
\end{matrix}\right.

\Delta DBA \sim \Delta DAC \left\{\begin{matrix}
\frac{b}{c} &= \frac{h}{n}  &\Rightarrow   & bh & = &cn  &(5) \\ 
\frac{c}{b} &= \frac{m}{h} &\Rightarrow   & ch & = &bm  &(3) \\ 
\frac{h}{n} &= \frac{m}{h} &\Rightarrow   & h^2 & = &mn  &(6) \\ 
\end{matrix}\right.

Resumindo as relações encontradas, excluindo as repetidas, temos:
\begin{matrix}
(1)b^2 = a.n&  (3)h^2=m.n&  (5)b.h=c.n \\ 
(2)c^2 = a.m&  (4)b.c=a.h&  (6)c.h=b.m 
\end{matrix}

Após esta revisão, vamos para questão.

Devemos saber que quando temos uma triângulo inscrito em uma circunferência onde a hipotenuse é igual ao diâmetro, este triângulo será retângulo.
Desta forma podemos usufruir das relações citadas anteriormente.

Observe que se utilizarmos,por exemplo relação (2), a solução é imediata.

12^2=16.x

Portanto,
x=9

Espero ter ajudado.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: relaçoes metricas na circuferencia

Mensagempor stanley tiago » Ter Abr 12, 2011 10:06

ah ai q ta a chave do negocio . minha era se eu podia afirmar q esse triangulo é retangulo

(Devemos saber que quando temos uma triângulo inscrito em uma circunferência onde a hipotenuse é igual ao diâmetro, este triângulo será retângulo)

tá certo então , vlw muito obrigado :)
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59