• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do Triângulo

Área do Triângulo

Mensagempor valeuleo » Ter Abr 05, 2011 11:25

Seja A = (2,1,1), B = (1,0,-2) e C = (4,1,3). Determine a área do triângulo ABC. Verifique se (9,-2,7) é ortogonal a AB e a AC.

Eu sei que o produto vetorial é igual a área do paralelograma que é 2 vezes a área do triângulo. Porém não sei se tenho que fazer alguma manipulação algébica. Ajuda para um iniciante.
valeuleo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Mar 23, 2011 14:19
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências da Computação
Andamento: cursando

Re: Área do Triângulo

Mensagempor LuizAquino » Ter Abr 05, 2011 11:42

Sabemos que a área T do triângulo de vértices A, B e C é dada por:
T = \frac{1}{2}||\vec{AB}\times\vec{AC}||

Sendo assim, primeiro você precisa calcular \vec{AB} = B - A= (a,\, b,\, c) e \vec{AC} = C - A = (d,\, e,\, f) .

Em seguida, calcule o produto vetorial através da determinante da matriz abaixo:

\vec{AB}\times\vec{AC} = \begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\ a & b & c \\ d & e & f\end{vmatrix} = (bf-ce)\vec{i} + (cd-af)\vec{j} + (ae-bd)\vec{k} = (bf-ce,\, cd-af,\, ae-bd)

Por fim, calcule a área T:
T = \frac{1}{2}\sqrt{(bf-ce)^2 + (cd-af)^2 + (ae-bd)^2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}