• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analitica (Graduação).

Geometria Analitica (Graduação).

Mensagempor 380625 » Sex Abr 01, 2011 15:58

Boa tarde estou no primeiro ano de graduação e estou tendo a materia Geometria Analitica o professor esta definindo segmento orientado e vetor. Mas para definir isso precisamos saber o que é equipolencia. Entre as definições esta tudo bem entendi bem o que sao segmentos orientados, classe de equipolência e vetores. Porem, não consigo provar e desenhar algumas coisas por exemplo:

1 - (A,B)~(C,D) IMPLICA (A,C)~(B,D) no livro em que estudo ele vez um caso particular dessa proposição no caso em que o quadrilatero ABCD é um paralelog

Após isso ele me faz tres questoes

Faça um desenho ilustrando a proposição 1 em que ABCD sao colineares.

Prove que (A,B)~(C,D) IMPLICA (B,A)~(D,C)

Prove que (A,B)~(C,D) IMPLICA (C,A)~(D,B).

Gostaria de dicas pois sei que é meio abstraro algumas coisas ainda mais quando estamos começando G.A.

Grato Flávio Santana
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Geometria Analitica (Graduação).

Mensagempor LuizAquino » Sex Abr 01, 2011 17:25

Dicas

380625 escreveu:Faça um desenho ilustrando a proposição 1 em que ABCD sao colineares.

Lembre-se que "colineares" significa que os pontos estão sobre uma mesma reta.

380625 escreveu:Prove que (A,B)~(C,D) IMPLICA (B,A)~(D,C)

Lembre-se que (A, B) é um segmento orientado com mesma direção, magnitude e sentido contrário a (B, A).

380625 escreveu:Prove que (A,B)~(C,D) IMPLICA (C,A)~(D,B).

Lembre-se do paralelogramo ABCD.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Geometria Analitica (Graduação).

Mensagempor 0 kelvin » Sáb Abr 02, 2011 00:10

Estou recebendo esses mesmos exercícios para resolver :-P

Do que entendi por enquanto foi que precisa prestar atenção na definição que tem no livro, mas não apenas na descrição, principalmente na parte que utiliza os símbolos, a notação matemática dos vetores.

Tambem senti que vetores são abstratos, talvez fiquem mais claros quando começarem a ser usados na física mesmo.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Geometria Analitica (Graduação).

Mensagempor MarceloFantini » Sáb Abr 02, 2011 01:04

Vetores ficarão mais claros quando estudarem Álgebra Linear. Quanto antes vocês destituírem-se da idéia de vetor como apenas uma flecha, melhor.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Analitica (Graduação).

Mensagempor 380625 » Dom Abr 03, 2011 12:32

Esse exercicio eu consegui resolver:

Prove que (A,B)~(P,Q) e (C,D)~(P,Q) IMPLICA (A,B)~(C,D):

No exercicio acima eu usei a propriedade simetrica e depois a transitiva e consegui resolver.


Então o que ta dificil para mim é:

Prove que (A,B)~(C,D)~IMPLICA(B,A)~(D,C), pois não consigo relacionar esse exercicio com as propriedades simetrica e transitiva.

Flávio Santana.
380625
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Sex Fev 18, 2011 17:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Física
Andamento: cursando

Re: Geometria Analitica (Graduação).

Mensagempor LuizAquino » Dom Abr 03, 2011 12:55

(A,\,B)\sim (C,\,D) \Rightarrow (B,\,A)\sim(D,\,C)

Temos que (A, B) e (C, D) são tais que possuem:
  • magnitude: m
  • direção: d
  • sentido: s

Sabemos que (B, A) possui:
  • magnitude: m
  • direção: d
  • sentido: -s (isto é, o sentido contrário de (A, B)).

Além disso, sabemos que (D, C) possui:
  • magnitude: m
  • direção: d
  • sentido: -s (isto é, o sentido contrário de (C, D)).

Portanto, (B, A) e (D, C) são equipolentes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: