• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Subespaço vetorial

Subespaço vetorial

Mensagempor drakonifor » Qui Mar 17, 2011 16:48

Boa tarde...

Tenho duvidas neste assunto que, por mais basicas que acredito serem, estão-me a fazer arrancar os olhos.

Bem, podem-me dizer se os seguintes conjuntos são subespaços vectoriais em R2??

S={(x,y)€R2: x+y diferente de 1}

S={(x,y)€R2: x+y = 0}


Espero que me possam ajudar tentar de uma vez por todas interiorizar este conteudo :)
drakonifor
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 17, 2011 16:43
Formação Escolar: ENSINO MÉDIO
Área/Curso: Redes e Sistemas informaticos
Andamento: cursando

Re: Subespaço vetorial

Mensagempor LuizAquino » Qui Mar 17, 2011 18:23

Dizemos que S é um subespaço do espaço vetorial V (sobre um corpo F) se S estiver contido em V e forem válidas as seguintes propriedades:
(i) (Existência do elemento neutro) 0 \in S.
(ii) (Fechado em relação a soma) Se u e v estão em S, então u + v também está em S.
(iii) (Fechado em relação a multiplicação de escalar) Se u está em S e k está em F, então ku também está em S.

Exemplo: Seja o espaço vetorial V=\mathbb{R}^2 sobre o corpo \mathbb{R}. Seja o subconjunto S=\{(x,\,y) \in V \,|\, x+y\neq 1\} de V.
(i) Tomando o ponto (0, 0) (que é o elemento neutro de V), temos que 0+0\neq 1. Sendo assim, (0,\,0)\in S

(ii) Sejam u=(x_1,\, y_1) e v=(x_2,\, y_2) pertencentes a S. Fazendo a soma entre u e v, temos u+v=(x_1+x_2,\,y_1+y_2). Agora, será que (x_1+x_2)  + (y_1+y_2) \neq 1? Não necessariamente! Por exemplo, temos que u=(1,\, 2) e v=(-1,\, -1) pertencem a S, já que 1+2\neq 1 e (-1)+(-1) \neq 1. Porém, u+v=(0, 1) e portanto 0+1=1. Isso significa que u+v = (0,\,1) \not\in S.

Como a propriedade (ii) não é válida eu nem preciso testar a propriedade (iii). Já poderemos dizer que S não é subespaço de V.

Agora é sua vez! Teste as três propriedades para ver se S=\{(x,\,y) \in V \,|\, x+y = 0\} é subespaço de V.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Subespaço vetorial

Mensagempor drakonifor » Qui Mar 17, 2011 18:30

Ora então:

(I) : (0,0) tal que 0+0=0? Sim

(II) : (x1,y1) + (x2,y2) (tal que x+y= 0) = (x1+x2, y1+y2);
Como (x y) tem de ser 0 significa que o X e o Y são 0 o que faz com que (x1+x2, y1+y2) seja 0 logo tambem está provado.

(III) : Qualquer valor multiplicado por 0 dá 0 logo a(x,y) será sempre igual a 0 por isso está provado que é subespaço.

Estão correctos os meus calculos?
drakonifor
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 17, 2011 16:43
Formação Escolar: ENSINO MÉDIO
Área/Curso: Redes e Sistemas informaticos
Andamento: cursando

Re: Subespaço vetorial

Mensagempor LuizAquino » Qui Mar 17, 2011 18:39

drakonifor escreveu:(ii) : (x1,y1) + (x2,y2) (tal que x+y= 0) = (x1+x2, y1+y2);
Como (x y) tem de ser 0 significa que o X e o Y são 0 o que faz com que (x1+x2, y1+y2) seja 0 logo tambem está provado.

Você está confundindo tudo! Se (x, y) está em S isso significa que x+y=0 e não que "x e o y são 0". Por exemplo, (1, -1) está em S, pois 1 + (-1) = 0, mas nem x e nem y são 0.

O que você tem que provar é que se (x1, y1) e (x2, y2) estão em S, então (x1+x2, y1+y2) também está em S. Ou seja, você tem que provar que (x1+x2)+(y1+y2)=0.

drakonifor escreveu:(III) : Qualquer valor multiplicado por 0 dá 0 logo a(x,y) será sempre igual a 0 por isso está provado que é subespaço.

Aqui você não justificou o que se quer! E ainda continua confundindo tudo!

O que você tem que provar é que se (x, y) está em S, então (kx, ky) também está em S. Ou seja, você tem que provar que kx+ky=0.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59