• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômios" Multiplicidade de raizes de polinômio

Polinômios" Multiplicidade de raizes de polinômio

Mensagempor Rose » Sex Set 21, 2012 18:42

Boa tarde!!

Estou com duvida nesta questão: Verifique se o polinômio p(x)= 2x^5 + 23x^4 + 96x^3 + 162 x^2 + 54x - 81 possui alguma raiz real de multiplicidade 4, e caso possua, encontre-a.

Resolução

Não sei se entendi certo o problema mas dividi o p(x)= 2x^5 + 23x^4 + 96x^3 + 162 x^2 + 54x - 81 por ( x-4) e obtive como resultado : q(x)= 2x^4 + 31x^3 +220x^2+ 1042 x + 4222 e r (x) =16880...Com isso conclui que X- 4 não é raiz....Mas como encontrar a riz certa!! Podes me ajudar!!
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando

Re: Polinômios" Multiplicidade de raizes de polinômio

Mensagempor young_jedi » Sex Set 21, 2012 19:59

um polinomio que possui uma raiz de multiplicidade 4 é um polinomio do tipo

P.(x-a)^2.(x-b)

sendo que a é sua raiz de multiplicidade quatro e b é uma raiz de multiplicidade 1
sendo estas as duas raizes do polinomio

pelas relações de Girard

4a+b&=&\frac{-23}{2}

6a^2+4ab&=&\frac{96}{2}

6a^2.b+4a^3&=&\frac{-162}{2}

4a^3.b+a^4&=&\frac{54}{2}

a^4.b&=&\frac{81}{2}

para que a seja raiz do polinomio e tenha multiplicidade 4 todas as equaçãoes devem ser satisfeitas
assim isolando b na primeira equação e substituindo na segunda temos

6a^2+4a(-4a-\frac{23}{2}&=&\frac{96}{2})

-16a^2+6a^2-46a-48&=&0

10a^2+46a+48&=&0

5a^2+23a^2+24&=&0

a&=&\frac{-23\pm \sqrt{23^2-4.5.24}}{2.5}

a&=&\frac{-23\pm \sqrt{529-480}}{10}

a&=&\frac{-23\pm \sqrt{49}}{10}

a&=&\frac{-23\pm7}{10}

a_{1}&=&-3

a_{2}&=&-\frac{2}{3}

para a=-3 temos

b&=&-\frac{23}{2}-4(-3)

b&=&\frac{1}{2}

substituindo nas demais equação vemos que a=-3 e b=1/2 satisfazem todas portanto -3 é raiz de multiplicidade 4
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Polinômios" Multiplicidade de raizes de polinômio

Mensagempor MarceloFantini » Sex Set 21, 2012 23:56

Jedi, por que escreveu (x-a)^2(x-b)? Uma raíz de multiplicidade quatro quer dizer que p(x) = (x-a)^4 (x-b), então estou perguntando por que da mudança de notação.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Polinômios" Multiplicidade de raizes de polinômio

Mensagempor young_jedi » Sáb Set 22, 2012 10:08

Voce esta certo MarceloFantini, obrigado por conferir, foi apenas um descuido meu
o correto é isto mesmo que vc colocou.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.