por Thiago Silveira » Dom Ago 15, 2010 18:07
Pessoal, sou novo aqui no fórum, como não encontrei lugar pra me apresentar, estou fazendo aqui mesmo. Meu nome é Thiago Silveira e tenho 18 anos. Prazer a todos. Estou estudando pra alguns vestibulares e queria ajuda na seguinte questão de polinômios da prova da ufmg de 2007:
http://www.ufmg.br/copeve/site/arquivos/Provas/2007/2etapa/2matematica.pdfQUESTÃO 03 (Constituída de três itens.)
As dimensões a, b e c, em cm, de um paralelepípedo retângulo são as raízes do polinômio
p (x) = 6x3 – 44x2 + 103x – 77
1. CALCULE o volume desse paralelepípedo.
2. CALCULE a soma das áreas das faces desse paralelepípedo.
3. CALCULE o comprimento da diagonal desse paralelepípedo.
Eu não consegui fazer nada da questão. Nunca estudei polinômios. A unica coisa que eu pensei foi igualar p(x)=0 e tentar fazer uma equação de 3º grau, mas eu nao tenho nenhuma ideia de como que faz. Preciso de ajuda. Só me mostrarem o caminho ou me dar alguma dica de polinomios por favor
até mais e obrigado desde já.
Thiago
-
Thiago Silveira
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Ago 15, 2010 17:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por Douglasm » Dom Ago 15, 2010 19:36
Olá Thiago, bem vindo ao fórum. Essa questão se resolve utilizando as Relações de Girard. Eu vou utilizar essas relações aqui sem explicá-las para não me delongar demais, por isso sugiro que dê uma olhada nelas para pode compreender a resolução.
a) O volume do paralelepípedo será o produto das suas três dimensões, que é igual ao produto das três raízes. As Relações de Girard nos dizem que esse produto é:

Consequentemente, o volume procurado é
77/6 cm³.
b) Nesse caso queremos a soma dos produtos de duas dimensões (que indicam áreas das faces). Esse produto é dado por:

Mas note que devemos multiplicar o valor que será obtido por 2, pois temos duas faces com as áreas
ab,
bc e
ca. Logo a soma procurada é de
103/3 cm².
c) Nesta questão conto com a sua visão do paralelepípedo, a fim de perceber que a diagonal é dada por:

Vamos encontrar essa soma dos quadrados das raízes (também conhecida como "Soma de Newton de grau 2") fazendo uma pequena manipulação com as somas de Girard, veja só:


A diagonal vale, portanto

cm.
Obs: -

;
Caso possua o gabarito, poste também em questões futuras. Espero ter ajudado, até a próxima.
Editado pela última vez por
Douglasm em Dom Ago 15, 2010 23:22, em um total de 1 vez.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Thiago Silveira » Dom Ago 15, 2010 23:05
Gostei da resolução. Parece estar certo. Olhei o gabarito no site do bernouli. Só a ultima que ao invés de 175/9 deu

. Eu aprendi relação de Girard em função, só que foi um pouquinho diferente em que

e

, mas eu nao sabia que podia usar assim. Eu, como eu disse nunca aprendi polinomios, fruto da "bela" educação do Brasil.
De toda forma, eu agredeço por me ajudar, vou estudar essa parte da matematica que ainda nao sei e tentar fazer exercícios deste tipo. Muito obrigado, qualquer outra duvida eu posto aqui.
T+
-
Thiago Silveira
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Ago 15, 2010 17:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
por Douglasm » Dom Ago 15, 2010 23:21
Tem razão, eu esqueci da raiz. A resposta correta da letra C é:

Vou corrigir lá em cima também para não haver ambiguidades.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Thiago Silveira » Seg Ago 16, 2010 18:03
Ok, então tá certo. Vlw por me ajudar. Eu faço aula particular de matemática e já pedi ao prof pra me ensinar. Já peguei monomios, binomios, e produto notavel. Não é tão dificil como eu pensei. Vlw, qualquer outra duvida eu posto por aqui. T+
-
Thiago Silveira
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Ago 15, 2010 17:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Questão POSCOMP 2011] Ajuda para interpretar questão
por hlustosa » Dom Jul 29, 2012 14:54
- 3 Respostas
- 12787 Exibições
- Última mensagem por hlustosa

Seg Jul 30, 2012 01:13
Funções
-
- Questão de P.A.
por mushthielv » Seg Ago 17, 2009 12:21
- 2 Respostas
- 10820 Exibições
- Última mensagem por Elcioschin

Ter Ago 18, 2009 08:54
Progressões
-
- QUESTÃO
por GABRIELA » Ter Set 08, 2009 16:32
- 2 Respostas
- 14512 Exibições
- Última mensagem por GABRIELA

Ter Set 08, 2009 21:21
Matrizes e Determinantes
-
- Questão da FCC
por wanderlymarques » Qua Nov 18, 2009 12:44
- 2 Respostas
- 4874 Exibições
- Última mensagem por wanderlymarques

Qui Nov 19, 2009 12:58
Cálculo: Limites, Derivadas e Integrais
-
- questão
por sirle ignes » Seg Mar 08, 2010 23:46
- 2 Respostas
- 4639 Exibições
- Última mensagem por sirle ignes

Ter Mar 09, 2010 17:32
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.