• Anúncio Global
    Respostas
    Exibições
    Última mensagem

continuaçao do exerc.anterior(ENE-1950)

continuaçao do exerc.anterior(ENE-1950)

Mensagempor adauto martins » Qui Nov 07, 2019 14:23

vamos dar continuidade ao exerc.anterior da ENE,para estimar se o polinomio dado,tem raizes reais,o que ja mostramos ter p/ x=1,raizes complexas...
primeiramente vamos estimar o intervalo das raizes,nao o fiz na questao anterior para mostrar como é o processo de encontrar raizes racionais,que sao tambem raizes reais,pois os racionais estao contidos nos reais e etc...
vamos usar,como fiz do exerc. do ITA,usar

\left|{r}_{(raizes)} \right|=1+\left|(max.({a}_{(ns)})/{a}_{n} \right|

\left|r \right|=1+\left|(-19)/3 \right|=1+(19/3)=22/3\approx 7.33...

logo nosso intervalo é menor que o estimado anteriormente...ficaria agora com,para raizes racionais

[-6,-4,-3,-2,-1,-4/3,-2/3,...,2,3,4,6] o qual nao mudaria muito do anterior...vamos tomar o polinomio

p(x)=3{x}^{4}-4{x}^{3}-19{x}^{2}+8x+12



vamos usar a "regra de descartes" para variaçao de sinais dos coeficientes

(+,-,-,+,+) nao nos daria 2 trocas,ou seja duuas raizes reais positivas,ou nenhuma.como ja calculamos que para x=1,tem-se p(x)=0,logo teremos mais uma raiz positiva...

agora vamos estimar para raizes reais negativas

p(-x)=3{(-x)}^{4}-4{(-x)}^{3}-19{(-x)}^{2}+8(-x)+12

p(-x)=3{x}^{4}+4{x}^{3}-19{x}^{2}-8x+12

\rightarrow (+,+,-,-,+)

2 trocas,o qual nos da 2 raizes reais negativas ou nenhuma...

vamos agora estimar se ha raizes complexo-conjugados

tomamos o polinomio novamente

p(x)=3{x}^{4}-4{x}^{3}-19{x}^{2}+8x+12

observar-se que p(0)\neq 0 e que nao ha nenhum coeficiente nulo...
temos que


{{a}_{4}}^{2}={(-4)}^{2}=16\succ 3.(-19)=-57...

como tambem temos

{{a}_{2}}^{2}={(-19)}^{2}=361\succ (-4).8=-32...

{{a}_{1}}^{2}={(8)}^{2}=64\succ (-19).12=-228...

como em nenhum desses encontramos a condiçao de

p/algum k,

{{a}_{k}}^{2}\preceq {a}_{(k+1)}.{a}_{(k-1)}

entao nao temos raiz complexo-conjugado,pois se encontrassemos pelo um k,que satisfaz a condiçao da "regra de huat",
mesmo tendo outros que nao satisfaça tal criterio,

teriamos raizes complexos-conjugados.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: continuaçao do exerc.anterior(ENE-1950)

Mensagempor adauto martins » Sex Nov 08, 2019 12:05

{a}_{2}=0...{a}_{(k+1)}.{a}_{(k-1)}=4.8=32\succ 0{a}_{2}=0...{a}_{(k+1)}.{a}_{(k-1)}=(4).(8)=32\succ 0vamos pegar mais um "gancho" na questao anterior da ENE-1950 e modificarmos o polinomio para que possamos ter raizes complexo-conjugado e encontrar a possivel localidade de suas raizes.vamos calcular o "anel",diferença entre cota-superior(disco maior) e cota inferior(disco menor).modificando o polinomio é claro que suas raizes reais serao outras,mas nosso foco serao apenas as raizes complexo-conjugado.
(1)
cota superior(disco maior) de um polinomio p(x) é dado por:

\left|z \right|\preceq 1+\sqrt[r]{\left|max.({a}_{n},...,{a}_{o})/{a}_{n} \right|}

onde r,é a diferença entre o maior grau,e o grau subsequente do polinomio e

max.({a}_{n},...,{a}_{0})

é o maior dos coeficientes de p(x),

{a}_{n}
coeficiente do monomio de maior grau...essas cotas,sao tambem cotas para o intervalo de numeros reais e mais precisas que o que estamos utilizazando,como o do exerc. do ITA,
\left|r \right|\preceq 1+\left|max.({a}_{n},...,{a}_{n})/{a}_{n} \right|

(2)
a cota inferior é dado por:

\left|z \right|\geq 1/(1+\sqrt[r]{\left|max.({a}_{n},...,{a}_{n})/{a}_{n} \right|})
onde r,é o menor dos graus do expoentes de p(x),
r\geq 2...

tomemos entao o polinomio

p(x)=3{x}^{4}+4{x}^{3}+8x+12

usando a "regra da lacuna" ,temos

p(0)=12\neq 0
verificamos que:
{a}_{2}=0...{a}_{(k+1)}.{a}_{(k-1)}=(4).(8)=32\succ 0

logo existe raiz complexo-conjugado.
vamos agora estimar sua,ou suas localizaçao:

cota superior

\left|z \right|\preceq 1+\left|\sqrt[4-3]({12}/3) \right|=1+4=5

\Rightarrow \left|z \right|\preceq 5...

cota inferior

\left|z \right|\geq 1/(1+\sqrt[2]{12/3} \right|})=1/(1+4)=1/\sqrt[]5

\left|z \right|\geq 1/\sqrt[]5

logo teremos

\left|{z}_{(sup.)} \right|\preceq 5\Rightarrow -5\preceq {z}_{(sup.)} \preceq 5

\left|{c}_{(inf)} \right|\geq 1/\sqrt[]{5}\Rightarrow -\left|{c}_{(inf)} \right|\preceq -(1/\sqrt[]{5})

\left|{c}_{(sup)} \right|-\left|{c}_{(inf)} \right|\preceq 5-(1/\sqrt[]{5})

logo as raizes complexos-conjugado de p(x),estao localizado no disco

\left|z \right|\preceq 5-(1/\sqrt[]{5})

ps-como disse o estudo de soluçoes de polinomio é extensa,seja a nivel medio,como superior.e seus calculos é parte da area da matematica aplicada,calculo numerico,que faz avançar teorico,como pratico os calculos feito por computadores...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?