• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolvido-continuaçao

exerc.resolvido-continuaçao

Mensagempor adauto martins » Sex Nov 01, 2019 11:51

vamos fazer um pequeno estudo,usando o polinomio que calculamos anteriormente do exame da ESCOLA MILITAR DO REALENGO.o estudo de polinomios é extenso,mesmo a nivel medio e um desafio sempre,pois se trata de uma equaçao diofantina nao-linear(envolve potencias de x maiores que 1(um)) e encontrar suas raizes,ou seja p(x)=0,sera sempre um desafio,e isso é que mantem a ciencia,a matematica sempre viva,sempre em abertos...
vamos indepente da restriçao do dominio da funçao original,tomar o polinomio:
p(x)={x}^{4}+2{x}^{3}-2x-2

encontramos,de uma maneira suscinta,o intervalo de localizaçao das raizes(e tem diversos metodos para tal,e todos eficientes;um dos metodos mais eficiente é o de LAGUERRE,o qual vc usa p(x) e p(-x) e encontra as cotas superiores e inferiores...).no nosso caso achamos o intervalo[-3,3],para efeito de calculo rapido.
usaremos agora o teorema de bolzano(estude ai...),calculando:

p(-3)={-3}^{4}+2{-3}^{3}-2(-3)-2=81-54+6-2=31\succ 0

p(3)={3}^{4}+2{3}^{3}-2.(3)-2=81+54-6-2=127\succ0

logo p(-3).p(3)\succ0

pelo teorema de bolzano,teremos um numero par de raizes reais,ou nenhuma...

se o produto p(-3).p(3)\prec 0
teriamos um numero impar de raizes.

agora usaremos o criterio de DESCARTES, das trocas de sinas de p(x) e p(-x)
em p(x) temos (+,+,-,-) uma troca,ou seja a possibilidade de termos uma raiz real positiva...
em p(-x) temos (+,-,+,-) duas trocas,ou seja a possiblidade de termos duas raizes negativas...
como ja mostramos que p(-3).p(3)\succ 0 e teremos nunhuma ou um numero par de raizes.temos a seguite configuraçao:
podemos ter uma raiz positiva,uma raiz negativa ou duas raizes negativas e nenhuma positiva,pois como o polinomio é de quarto grau,podemos ter um par de raizes complexos-conjugado.pois nao existe uma so raiz complexa,e sim em pares de complexos-conjugados.um criterio para saber se ha raizes complexas é da pela "regra da lacuna" e 'regra de huat",que em suma diz:

se p(0)\neq 0 e se tomarmos algum k(0\prec k \prec n)

tivermos {{a}_{k}}^{2}\preceq {a}_{(k-1)}.{a}_{(k+1)}...ou

{a}_{(k-1)}.{a}_{(k+1)}\succ 0

voltando ao nosso polinomio,teremos

p(0)=-2\neq 0...

tomemos [tex]k=3...{{a}_{3}}^{2}={2}^{2}=4\succ ({a}_{4}.{a}_{2})=1.0=0

ou {a}_{4}.{a}_{2}=1.0=0...,ou seja nao temos um par de complexos-conjugados.

logo,poderemos ter ,pelo que frizamos ate o momento uma raiz real positiva e uma raiz real negativa,ou duas raizes negativas,ou nenhuma raiz...
encontra-las,se houver, faremos adiante,no momento eu queria fazer apenas essa pequena explanaçao...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido-continuaçao

Mensagempor adauto martins » Sex Nov 01, 2019 22:10

correçao:
a "regra da lacuna",postei errado:
a regra diz:

se p(x)\neq 0 e para algum k,(0\prec k \prec n)

tivermos {a}_{k}=0 e {a}_{(k+1)}.{a}_{(k-1)}\succ 0,
entao p(x)
tera raizes complexas-conjugado.

e ainda se houver dois ou mais coeficientes consecutivos nulos,entao p(x) tera raizes complexos-conjugado.

as raizes calcularei pelo metodos das tangentes,metodo de newton-raphson...mais adiante...

por agora cansei um pouco de matematica...
ps-esse exercicio que é da ESCOLA MILITAR DO REALENGO(atual AMAN),do concurso á admissao a tal escola é de 1934,ou seja em 1933 cobravam para essas escolas superiores calculo,pensa.e calculo de qualidade,equiparado aos melhores cursos de calculo 1,de nossas melhores universiodades federais atual...mudou muito...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 14 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D