, na forma de binômio?Bom, eu tentei escreve-lo da seguinte forma
. Como o segundo termo do binômio não gera o termo do meio do polinômio supracitado, permaneço com a dúvida.
, na forma de binômio?
. Como o segundo termo do binômio não gera o termo do meio do polinômio supracitado, permaneço com a dúvida.
![\\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}} \\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}}](/latexrender/pictures/01a1de09ebb5a44129c547fe0e0c83ae.png)
, afim de visualizar com mais clareza, e aplique o "método".







DanielFerreira escreveu: Olá Danilo. Seja bem vindo.
Espero ter ajudado!
A propósito, uma outra saída seria por "soma e produto" das raízes. Tome, afim de visualizar com mais clareza, e aplique o "método".

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)