por ezidia51 » Qui Set 05, 2019 15:09
Por favor aluém poderia me ajudar e checar se estes exercícios estão corretos?Obrigado
Ex 1 Analise as afirmações abaixo e assinale a alternativa correta:
A equação x²=1 tem apenas uma solução inteira.
No conjunto Z dos números inteiros, o intervalo 2 < x < 5 tem infinitos pontos.
Todo número inteiro x satisfaz a relação x² > 0.
Apenas a afirmação III é verdadeira.
Apenas a afirmação I é verdadeira.
Todas as afirmações são falsas.
As afirmações I e II são verdadeiras.
Todas as afirmações são verdadeiras.
Ex 2-Analise as afirmações abaixo e assinale a alternativa correta:
(a + b)2 = a2 + b2, para a e b inteiros quaisquer.
1/2 + 1/2 = 2/4.
3² = (-3)2 implica 3 = -3
Todas as afirmações são falsas.
Apenas a afirmação III é falsa.
Apenas a afirmação II é falsa.
Apenas a afirmação I é falsa.
Nenhuma afirmação é falsa.
Ex 3-Analise as afirmações abaixo e assinale a alternativa correta:
Se a < b, então a2< b2, para todo a, b inteiros.
Se a2< b2, então a < b, para todo a, b inteiros.
Se a divide b e a divide c, então a divide b+c, com a, b, c inteiros.
Apenas a afirmação I é verdadeira.
Apenas a afirmação II é verdadeira.
As afirmações I e II são verdadeiras.
Nenhuma afirmação é verdadeira.
Apenas a afirmação III é verdadeira.
Ex 4-Analise as afirmações abaixo e assinale a alternativa correta:
Se n^2 é par então n é par (n número inteiro).
Para todo n inteiro, tem-se que n + 1 ? n.
Todas as afirmações são verdadeiras.
Apenas a afirmação II é verdadeira.
Todas as afirmações são falsas.
Apenas a afirmação I é verdadeira.
Ex 5 -Analise as afirmações abaixo e assinale a alternativa correta:
No conjunto dos inteiros tem-se que a + b = a + c implica b = c.
No conjunto dos naturais vale o mesmo que em I.
Apenas a afirmação II é verdadeira.
Apenas a afirmação I é verdadeira.
Todas as afirmações são falsas.
Todas as afirmações são verdadeiras.
Ex 6- Analise as afirmações abaixo e assinale a alternativa correta:
Todo número natural é um número inteiro.
Todo número inteiro é um número natural.
Apenas a afirmação II é verdadeira.
Apenas a afirmação I é verdadeira.
Todas as afirmações são verdadeiras.
Todas as afirmações são falsas.
Ex 7-Analise as afirmações abaixo e assinale a alternativa correta:
a ? b implica a < b e a = b.
a^2 = b2 implica a = b.
Se a divide b e b divide a, então a = b.
Todas as afirmações são verdadeiras.
Apenas a afirmação I é verdadeira.
Todas as afirmações são falsas.
Apenas a afirmação III é verdadeira.
As afirmações I e II são verdadeiras.
Ex 8-Analise as afirmações abaixo e assinale a alternativa correta:
Sendo a e b números inteiros e se a ? b, então a divide b.
Não existe nenhum número primo par.
Todo número divisível por 2 é também divisível por 4.
Apenas a afirmação III é verdadeira.
Apenas a afirmação II é falsa.
Apenas a afirmação II é verdadeira.
Todas as afirmações são falsas.
Todas as afirmações são verdadeiras.
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por DanielFerreira » Dom Jan 26, 2020 15:20
ezidia51, não coloque tantas questões num tópico. Procure postar uma questão por tópico!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LÓGICA] simplificação lógica e leis de equivalência
por MatheusComp606 » Qua Ago 24, 2016 16:13
- 1 Respostas
- 5278 Exibições
- Última mensagem por adauto martins

Seg Ago 29, 2016 15:34
Lógica
-
- [Polinômios] Grau do Polinômios e +
por Warioboy » Ter Mai 29, 2012 15:06
- 5 Respostas
- 7589 Exibições
- Última mensagem por Cleyson007

Dom Jun 03, 2012 16:18
Polinômios
-
- Lógica
por Neperiano » Qui Jun 19, 2008 16:48
- 17 Respostas
- 26089 Exibições
- Última mensagem por Neperiano

Sex Nov 11, 2011 15:51
Desafios Enviados
-
- lÓGICA
por Jaison Werner » Qui Set 15, 2011 11:28
- 2 Respostas
- 3404 Exibições
- Última mensagem por Neperiano

Qui Nov 10, 2011 15:31
Lógica e Conjuntos
-
- Lógica
por Pstefani » Ter Set 20, 2011 19:56
- 1 Respostas
- 2429 Exibições
- Última mensagem por MarceloFantini

Ter Set 20, 2011 21:40
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.