• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar as raízes de um polinômio

Determinar as raízes de um polinômio

Mensagempor nanasouza123 » Sex Set 22, 2017 21:09

O produto de duas raízes da equação {2x}^{3}-{19x}^{2}+37x-14=0 é 1. Determinar as raízes desse polinômio.
nanasouza123
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Set 22, 2017 20:10
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Determinar as raízes de um polinômio

Mensagempor DanielFerreira » Sex Nov 20, 2020 19:07

Sejam \mathsf{x_1}, \mathsf{x_2} e \mathsf{x_3} as raízes da equação em questão. De acordo com o enunciado, o produto de duas delas vale UM. Em símbolos,

\mathsf{x_1 \cdot x_2 = 1}

Por Girard, temos que o produto das (três) raízes vale...

\\ \mathsf{P = - \frac{- 14}{2}} \\\\ \boxed{\mathsf{P = 7}}

Portanto,

\\ \mathsf{P = x_1 \cdot x_2 \cdot x_3} \\\\ \mathsf{7 = 1 \cdot x_3} \\\\ \boxed{\mathsf{x_3 = 7}}

Isto é, SETE é uma raiz da equação. Dito isto, pelo método da chave, podemos determinar a equação (de grau dois) que permitirá encontrar as demais raízes. Segue,

+ 2x³ - 19x² + 37x - 14 | x - 7
____________________| 2x² - 5x + 2
+ 2x³ - 19x²
- 2x³ + 14x²
____________________|
- 5x² + 37x - 14
+ 5x² - 35x
____________________|
+ 2x - 14
- 2x + 14
____________________|
0

Daí,

\mathsf{2x^3 - 19x^2 + 37x - 14 = (x - 7) \cdot (2x^2 - 5x + 2) = 0}

Com efeito,

\\ \mathsf{2x^2 - 5x + 2 = 0} \\\\ \mathsf{2x^2 - 4x - x + 2 = 0} \\\\ \mathsf{2x(x - 2) - 1(x - 2) = 0} \\\\ \mathsf{(x - 2) \cdot (2x - 1) = 0} \\\\ \boxed{\mathsf{x = 1/2}} \\\\ \boxed{\mathsf{x = 2}}

Por fim, podemos concluir que

\boxed{\boxed{\mathsf{S = \left \{ \frac{1}{2}, 2, 7 \right \}}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D