por +Danilo2 » Qui Set 29, 2016 10:43
Como fatorar esse polinômio,

, na forma de binômio?
Bom, eu tentei escreve-lo da seguinte forma

. Como o segundo termo do binômio não gera o termo do meio do polinômio supracitado, permaneço com a dúvida.
-
+Danilo2
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Set 29, 2016 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
por DanielFerreira » Sex Set 30, 2016 01:22
Olá Danilo, seja bem-vindo!
![\\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}} \\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}}](/latexrender/pictures/01a1de09ebb5a44129c547fe0e0c83ae.png)
Espero ter ajudado!
A propósito, uma outra saída seria por "soma e produto" das raízes. Tome

, afim de visualizar com mais clareza, e aplique o "método".
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Soprano » Sex Set 30, 2016 13:31
-
Soprano
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Dom Fev 14, 2016 10:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Electrónica
- Andamento: cursando
por DanielFerreira » Sáb Out 01, 2016 20:51
Não. Os termos entre parênteses devem ser iguais, assim poderá colocá-los em evidência!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Soprano » Dom Out 02, 2016 20:48
Não entendi, importa-se de explicar melhor? obrigado
-
Soprano
- Usuário Ativo

-
- Mensagens: 21
- Registrado em: Dom Fev 14, 2016 10:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Electrónica
- Andamento: cursando
por +Danilo2 » Sáb Out 08, 2016 18:17
DanielFerreira escreveu: Olá Danilo. Seja bem vindo.
![\\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}} \\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}}](/latexrender/pictures/01a1de09ebb5a44129c547fe0e0c83ae.png)
Espero ter ajudado!
A propósito, uma outra saída seria por "soma e produto" das raízes. Tome

, afim de visualizar com mais clareza, e aplique o "método".
Muito obrigado pela ajuda
-
+Danilo2
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Qui Set 29, 2016 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- fatoração de Polinômio fatoração de agrupamento
por Estudante13 » Sex Nov 09, 2012 22:52
- 1 Respostas
- 3054 Exibições
- Última mensagem por Cleyson007

Sex Nov 09, 2012 23:06
Álgebra Elementar
-
- Fatoração de Polinômio
por Gobate » Dom Nov 21, 2010 01:50
- 1 Respostas
- 1792 Exibições
- Última mensagem por OtavioBonassi

Qua Jan 05, 2011 21:38
Polinômios
-
- Fatoração de Polinômio
por Jacques » Sex Set 02, 2016 22:24
- 1 Respostas
- 2158 Exibições
- Última mensagem por adauto martins

Sáb Set 10, 2016 14:41
Álgebra Elementar
-
- Fatoração e raízes de um polinômio
por pablohas » Qua Dez 08, 2010 21:26
- 2 Respostas
- 3588 Exibições
- Última mensagem por Elcioschin

Sex Dez 10, 2010 22:05
Polinômios
-
- [Equação do segundo grau]Resolvida por fatoração.
por Matheus Lacombe O » Sáb Jan 05, 2013 14:45
- 5 Respostas
- 4780 Exibições
- Última mensagem por ant_dii

Ter Jan 08, 2013 23:46
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.