• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Correção Polinômios III

Correção Polinômios III

Mensagempor Cleyson007 » Dom Jan 24, 2010 11:00

Bom dia!

Gostaria que me ajudasse a corrigir os exercícios abaixo. A apostila de onde tirei-os não apresenta o gabarito.

Imagem

Minhas respostas:

Imagem

Agradeço sua ajuda!

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Correção Polinômios III

Mensagempor vyhonda » Sex Fev 12, 2010 15:18

4. Como (b+d)x^4=4x^4, então b+d=4;
da mesma forma: b+d=4;
d+a=0 >>> d=-a;
a-c=2 >>> c=a-2 ();
c+b=0 >>> c=-b (II);
Substituindo-se II em I: -b=a-2 ou b=-a+2 e sabemos que d=-a, então b=d+2 (III);

Substituindo III em b+d=4, d+2+d=4, 2d=2, d=1 e portanto b=3;

Espero que tenha ajudado!!

té mais!
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.