• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Montar Polinômio Para Calcular Padrões

Montar Polinômio Para Calcular Padrões

Mensagempor s1ncl41r » Seg Out 13, 2014 15:26

Considerando a Espiral de Ulam
Imagem

O polinômio f(x) = 4x^2-2x+1 pode calcular os números da diagonal 1-3-13-31, pois:
Para
x=1 a f(1)=3
x=2 a f(2)=13
x=3 a f(3)=31
x=4 a f(4)=57
x=5 a f(5)=91
E assim por diante

É possível chegar em outros polinômios, para calcular outras diagonais e retas da Espiral de Ulam apenas chutando novos valores na expressão, como em f(x)=4x^2-3x+1 para calcular os números da reta 1-2-11-28, mas como isso é feito matematicamente falando, sem chutar valores? Por exemplo, como eu poderia criar uma expressão semelhante que me trouxesse os resultados da diagonal 1-5-17-37, e da reta 1-8-23-46, etc?
s1ncl41r
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Out 13, 2014 12:56
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Montar Polinômio Para Calcular Padrões

Mensagempor Russman » Seg Out 13, 2014 21:00

Um polinômio de grau n tem n parâmetros livres. Tais são as constantes reais que multiplicam as potências da variável que estão se somando. Um outras palavras, um polinômio de grau n é uma combinação linear do espaço \left \{ 1,x,x^2,x^3,...,x^n \right \}.

Assim, se eu preciso de um polinômio p(x) que calcule os números 2 e 3, por exemplo, posso dizer que p(1)=2 e p(2) = 3 e montar um sistema de equações que determine os parâmetros livres.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59