• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[calcular p(3) ]

[calcular p(3) ]

Mensagempor JKS » Sáb Jun 29, 2013 03:38

não consegui, se alguém puder me ajudar, desde já eu agradeço.

Sabendo que P(x) do quarto grau é divisível por {\left(x-2 \right)}^{3} e p(0)= -8 e p(1)=-3, determine o valor de p(3).

gabarito: 7
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [calcular p(3) ]

Mensagempor DanielFerreira » Qua Jul 17, 2013 22:28

Se P(x) é do 4° grau e divisível por (x - 2)^3, temos que: \boxed{P(x) = (x - 2)(x - 2)(x - 2)(ax - b)}

Condição III: p(0) = - 8

\\ P(x) = (x - 2)(x - 2)(x - 2)(ax - b) \\ P(0) = (0 - 2)(0 - 2)(0 - 2)(a \cdot 0 - b) \\ - 8 = (- 2) \cdot (- 2) \cdot (- 2) \cdot (- b) \\ 8b = - 8 \\ \boxed{b = - 1}


Condição IV: p(1) = - 3

\\ P(x) = (x - 2)(x - 2)(x - 2)(ax - b) \\ P(1) = (1 - 2)(1 - 2)(1 - 2)(a \cdot 1 - b) \\ - 3 = (- 1) \cdot (- 1) \cdot (- 1) \cdot (a - b) \\ - 3 = - (a + 1) \\ - 3 = - a - 1 \\ \boxed{a = 2}


Concluímos que P(x) = (x - 2)(x - 2)(x - 2)(2x + 1)


Daí,

\\ P(x) = (x - 2)(x - 2)(x - 2)(2x + 1) \\ P(3) = (3 - 2)(3 - 2)(3 - 2)(6 + 1) \\ P(3) = 1 \cdot 1 \cdot 1 \cdot 7 \\ \boxed{\boxed{P(3) = 7}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}