por Fabricio dalla » Sáb Abr 09, 2011 00:38
sendo1 e 1+2i raizes da equaçao

,em que a,b e c são numeros reais,entao a soma de b+c e igual a ?
ue num tem que fazer isso
(x-1).[x-(1+2i)].[x-(1-2i)]
ai desenvolver e somar os coeficientes b+c, so que n bate a resposta:(
R:b+c=2
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Sáb Abr 09, 2011 10:39
Fabricio dalla escreveu:sendo1 e 1+2i raizes da equaçao

,em que a,b e c são numeros reais,entao a soma de b+c e igual a ?
ue num tem que fazer isso
(x-1).[x-(1+2i)].[x-(1-2i)]
ai desenvolver e somar os coeficientes b+c, so que n bate a resposta:(
R:b+c=2
as raízes são 1 e 1+2i, então devemos substituí-las uma a uma; veja:
x³ + ax² + bx + c = 0
(1)³ + a(1)² + b(1) + c = 0
1 + a + b + c = 0
b + c = - 1 - ax³ + ax² + bx + c = 0
(1 + 2i)³ + a(1 + 2i)² + b(1 + 2i) + c = 0
(1 + 6i + 12i² + 8i³) + a(1 + 4i + 4i²) + b(1 + 2i) + c = 0
1 + 6i + 12(- 1) + 8(- i) + a + 4ai + 4a(- 1) + b + 2bi + c = 0
1 + 6i - 12 - 8i + a + 4ai - 4a + b + 2bi + c = 0
1 - 12 + a - 4a + b + c + 6i - 8i + 4ai + 2bi = 0
- 11 - 3a + b + c - 2i + 4ai + 2bi = 0
- 11 - 3a + b + c = 0
b + c = 3a + 11- 1 - a = 3a + 11
- 12 = 4a
a = - 3b + c = - 1 - a
b + c = - 1 + 3
b + c = 2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por LuizAquino » Sáb Abr 09, 2011 12:07
Fabricio dalla escreveu:(x-1).[x-(1+2i)].[x-(1-2i)]
ai desenvolver e somar os coeficientes b+c, so que n bate a resposta:(
R:b+c=2
Envie o seu desenvolvimento para que possamos achar o erro.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Fabricio dalla » Sáb Abr 09, 2011 18:07
ok então
(x-1).[x-(1+2i)].[x-(1-2i)]=
![(x-1).[x-1-2i].[x-1+2i] (x-1).[x-1-2i].[x-1+2i]](/latexrender/pictures/3d75358e39ab885fef28b498300a9349.png)
![(x-1)[{x}^{2}-x+2ix-x+1-2i-2ix+2i-4{i}^{2}] (x-1)[{x}^{2}-x+2ix-x+1-2i-2ix+2i-4{i}^{2}]](/latexrender/pictures/87b62004089cc134624b22a1eeccc2bb.png)
=


aff errei por falta de atençao msm!!! desculpe ai gente!
b=7
c=-5
b+c=2
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Não sei aonde está o erro
por Douglas16 » Qui Mar 28, 2013 13:35
- 4 Respostas
- 1950 Exibições
- Última mensagem por Douglas16

Sex Mar 29, 2013 12:08
Cálculo: Limites, Derivadas e Integrais
-
- Onde foi que eu errei
por Gabriel Doria » Sex Mar 23, 2012 00:03
- 2 Respostas
- 1505 Exibições
- Última mensagem por MarceloFantini

Sex Mar 23, 2012 08:16
Cálculo: Limites, Derivadas e Integrais
-
- FATORIAL (ONDE EU ERREI?)
por natanskt » Qui Dez 02, 2010 17:33
- 3 Respostas
- 1789 Exibições
- Última mensagem por alexandre32100

Sex Dez 03, 2010 14:24
Binômio de Newton
-
- Integral - onde errei?
por dina ribeiro » Sex Mar 16, 2012 18:39
- 7 Respostas
- 3040 Exibições
- Última mensagem por dina ribeiro

Dom Mar 18, 2012 15:15
Cálculo: Limites, Derivadas e Integrais
-
- Integral - onde errei?
por dina ribeiro » Sex Mar 23, 2012 21:03
- 1 Respostas
- 974 Exibições
- Última mensagem por MarceloFantini

Sex Mar 23, 2012 21:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.