por Fabricio dalla » Sáb Abr 09, 2011 00:38
sendo1 e 1+2i raizes da equaçao

,em que a,b e c são numeros reais,entao a soma de b+c e igual a ?
ue num tem que fazer isso
(x-1).[x-(1+2i)].[x-(1-2i)]
ai desenvolver e somar os coeficientes b+c, so que n bate a resposta:(
R:b+c=2
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por DanielFerreira » Sáb Abr 09, 2011 10:39
Fabricio dalla escreveu:sendo1 e 1+2i raizes da equaçao

,em que a,b e c são numeros reais,entao a soma de b+c e igual a ?
ue num tem que fazer isso
(x-1).[x-(1+2i)].[x-(1-2i)]
ai desenvolver e somar os coeficientes b+c, so que n bate a resposta:(
R:b+c=2
as raízes são 1 e 1+2i, então devemos substituí-las uma a uma; veja:
x³ + ax² + bx + c = 0
(1)³ + a(1)² + b(1) + c = 0
1 + a + b + c = 0
b + c = - 1 - ax³ + ax² + bx + c = 0
(1 + 2i)³ + a(1 + 2i)² + b(1 + 2i) + c = 0
(1 + 6i + 12i² + 8i³) + a(1 + 4i + 4i²) + b(1 + 2i) + c = 0
1 + 6i + 12(- 1) + 8(- i) + a + 4ai + 4a(- 1) + b + 2bi + c = 0
1 + 6i - 12 - 8i + a + 4ai - 4a + b + 2bi + c = 0
1 - 12 + a - 4a + b + c + 6i - 8i + 4ai + 2bi = 0
- 11 - 3a + b + c - 2i + 4ai + 2bi = 0
- 11 - 3a + b + c = 0
b + c = 3a + 11- 1 - a = 3a + 11
- 12 = 4a
a = - 3b + c = - 1 - a
b + c = - 1 + 3
b + c = 2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por LuizAquino » Sáb Abr 09, 2011 12:07
Fabricio dalla escreveu:(x-1).[x-(1+2i)].[x-(1-2i)]
ai desenvolver e somar os coeficientes b+c, so que n bate a resposta:(
R:b+c=2
Envie o seu desenvolvimento para que possamos achar o erro.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Fabricio dalla » Sáb Abr 09, 2011 18:07
ok então
(x-1).[x-(1+2i)].[x-(1-2i)]=
![(x-1).[x-1-2i].[x-1+2i] (x-1).[x-1-2i].[x-1+2i]](/latexrender/pictures/3d75358e39ab885fef28b498300a9349.png)
![(x-1)[{x}^{2}-x+2ix-x+1-2i-2ix+2i-4{i}^{2}] (x-1)[{x}^{2}-x+2ix-x+1-2i-2ix+2i-4{i}^{2}]](/latexrender/pictures/87b62004089cc134624b22a1eeccc2bb.png)
=


aff errei por falta de atençao msm!!! desculpe ai gente!
b=7
c=-5
b+c=2
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Não sei aonde está o erro
por Douglas16 » Qui Mar 28, 2013 13:35
- 4 Respostas
- 1964 Exibições
- Última mensagem por Douglas16

Sex Mar 29, 2013 12:08
Cálculo: Limites, Derivadas e Integrais
-
- Onde foi que eu errei
por Gabriel Doria » Sex Mar 23, 2012 00:03
- 2 Respostas
- 1518 Exibições
- Última mensagem por MarceloFantini

Sex Mar 23, 2012 08:16
Cálculo: Limites, Derivadas e Integrais
-
- FATORIAL (ONDE EU ERREI?)
por natanskt » Qui Dez 02, 2010 17:33
- 3 Respostas
- 1800 Exibições
- Última mensagem por alexandre32100

Sex Dez 03, 2010 14:24
Binômio de Newton
-
- Integral - onde errei?
por dina ribeiro » Sex Mar 16, 2012 18:39
- 7 Respostas
- 3065 Exibições
- Última mensagem por dina ribeiro

Dom Mar 18, 2012 15:15
Cálculo: Limites, Derivadas e Integrais
-
- Integral - onde errei?
por dina ribeiro » Sex Mar 23, 2012 21:03
- 1 Respostas
- 985 Exibições
- Última mensagem por MarceloFantini

Sex Mar 23, 2012 21:10
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.