por Leojpa400 » Seg Nov 28, 2011 15:53
Tenho dificuldades em tres formas de calcular os numeros complemos a Primeira é determinar seu conjugado
Obs: Como eu não sei representar o símbolo de Z conjugado, ao qual Z leva um traço em cima dele, então quando eu qser dizer Z é conjugado, apenas irei escrever Z(conjugado)
Z = 4i então Z(conjugado) = -4i
Até aí, é fácil mas quando aparecer, por exemplo: Z = -3 então seu conjugado será Z(conjugado) = -3, ou seja, é só repetir a parte real?
Para determinar Z.Z(conjugado) eu fiz da seguinte maneira
a) Z= 3+4i
Z.Z(conjugado) = 3+4i
(a+bi).(a-bi) = 3+4i
a² + bi² = 3+4i
A partir daí já não sei o que fazer, em um antigo exercício que meu prof. fez, ele achou 'a' e depois conseguiu finalizar o cálculo corretamente... Mas como finalizar este calculo nessa situação?
Na divisão, eu fiz quatro cálculos, dos quais não tenho certeza se estão certos. Eu segui os exemplos do professor passo a passo, mas acho que posso ter errado em algo, seja no cálculo ou nos sinais, ou mesmo em organizar o calculo carretamente.
a) 3+i/2+2i
(3+i)(3-i)/(2-2)i = (9-i²).(3-3)i/4-2² = 10+i/8 =10/8 + i/8
b) 2+3i/i
(2+3i)(2-3i)/i.(-i) = (4-9)(6-6)i/-i² = -5-i/-(-1) = -5-i/1 = -5-i
c) i/4-2i
i.(-i)/(4-2i).(4+2i) = -i²/(16-2²(8-8) = 1/12
d) 4-2i/2+i
(4-2i)(4+2i)/(2+i).(2-I) = (16-8).(8-8)i/(4-i²)(-2-2) = 8/5
Preciso de orientações para entender melhor os números complexos, se alguem conseguir me explicar, e mostrar o que fiz de errado, de modo que eu consiga entender onde errei, eu ficarei muito agradecido mesmo!
Atenciosamente.
-
Leojpa400
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Nov 08, 2011 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Leojpa400 » Qua Nov 30, 2011 02:07
O 2 resolvi fazer de uma outra maneira e acho q é a mais certa, vejam:
Determine z.z(conjugado)
a) z = 3+4i
z= 3²+4i²
9+16i
z =25
Será q essa é a fomra correta?
Depois que eu me aprofundei melhor no assunto, percebi q fiz td errado, entao refiz todos os cálculos seguindo a formula Z1/Z2 = z1.z2(conjugado)/z2.z2(conjugado)
a)(3+i)(2-2)i/(2+2i)(2-2i) = (6-2)(-6+2)i/(4-2i²)(-4+4i) = 4 - 4i
b)(2+3i)/(-i)/i.(-i) = -2-3i²/-i² = -2-9i/-(-1) = -2-9i/1 = -2 -9i
c)i(4+2i)/(4-2i)(4+2i) = 4+2i²/(16-2i²(8-8) = 4+6i/12 = 4/12 + 6i/12
d) (4-2i)(2-i)/2(+i(2-i) = (16-2i²(4-4)i/(4-i²)(-2+2) = 12/4-(-1) = 12/5
Espero que esteja certo agora, a primeira vez q fiz nao tem nada a ve com nada. Se algm perceber algum erro nessa segunda vez q fiz, peço por favor q me diga. abç!
-
Leojpa400
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Ter Nov 08, 2011 13:29
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Preciso de ajuda para ver se esta correto
por arima » Qui Fev 10, 2011 16:59
- 2 Respostas
- 2359 Exibições
- Última mensagem por arima

Sáb Fev 12, 2011 11:16
Progressões
-
- Probleminha de funções, preciso de ajuda para resolver.
por d4rwin » Ter Ago 18, 2015 01:31
- 8 Respostas
- 5315 Exibições
- Última mensagem por nakagumahissao

Ter Ago 18, 2015 19:52
Funções
-
- preciso de ajuda para resolver um exercicio sobre matrizes
por anabela » Sáb Nov 14, 2009 09:09
- 7 Respostas
- 6953 Exibições
- Última mensagem por Nelito

Seg Nov 16, 2009 16:56
Matrizes e Determinantes
-
- Função Racional - preciso de ajuda para hoje ainda!
por raf » Seg Set 28, 2015 14:32
- 1 Respostas
- 2472 Exibições
- Última mensagem por nakagumahissao

Sex Out 02, 2015 00:47
Funções
-
- [Limites]Preciso de ajuda para calcular alguns limites
por Pessoa Estranha » Ter Jul 16, 2013 17:15
- 2 Respostas
- 4191 Exibições
- Última mensagem por LuizAquino

Qua Jul 17, 2013 09:12
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.