• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algumas dúvidas urgentes!

algumas dúvidas urgentes!

Mensagempor kika » Ter Nov 25, 2008 00:37

Boa noite!
Amanhã eu terei prova de calculo 3, e existem alguns exercicios da lista que não consegui chegar a um resultado, será que alguém pode me auxiliar a resolução?

1)resolver a equação{z}^{4}+81=0 no conjunto dos números reais complexos e represente as soluções.
Resposta: {z}_{0}=3\left(\frac{\sqrt[]{2}}{2} +i\frac{\sqrt[]{2}}{2}\right) e {z}_{1}=3\left(-\frac{\sqrt[]{2}}{2} -i\frac{\sqrt[]{2}}{2}\right)

so que quando eu tentei resolver usando a formula das raizes eu consegui chegar em 4 respostas

2)Desenho o lugar geométrico dos afixos dos números complexos z tais que: z \left( z \right) + 5\left( z \right) + 5z + 9 = 0 considerar o (z) como Z barra ou (x-iy);

Sei que tenho que achar a equação e achar os pontos para traçar no plano de Argand-gauss, mas chego na equação:{x}^{2}+{y}^{2}+10x+9=0 como devo simplificar para achar os pontos, ou dessa equação tiro os pontos e coloco no gráfico? essa seria uma equação de reta, separando o y e tirando a raíz do resto?

Mas uma dúvida, em série de fourier, como achar a equação da reta paralela ao eixo x (negativo em x com os pontos \left(-\pi,\frac{\pi}{2} \right) e\left(0,\frac{\pi}{2} \right)) outra inclinada(com os pontos \left(0,-\pi \right) e \left(\pi,0 \right)), para iniciar os calculos?
kika
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 25, 2008 00:01
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: algumas dúvidas urgentes!

Mensagempor kika » Qui Nov 27, 2008 06:54

A primeira questão eu descobri que trocando {z}^{4}=\left(x+iy \right) eu chego e duas equações e igualando parte real com real e imaginária com imaginária, eu consigo achar que x=y chegando assim nas duas respostas:
{z}_{0}=3(\frac{\sqrt[]{2}}{2}+i\frac{\sqrt[]{2}}{2}) e {z}_{1}=3(-\frac{\sqrt[]{2}}{2}-i\frac{\sqrt[]{2}}{2})

Para a série de Fourier a primeira equação é f\left(x \right)=\frac{\pi}{2} e na segunda por matriz eu chego na equação \begin{align}
   
\begin{vmatrix}
   x & y & 1  \\ 
   0 & -\pi & 1  \\ 
   \pi & 1 & 1  

\end{vmatrix}

Se alguém ainda puder me dizer como continuo o segundo exercício ficaria agradecida!

Obrigada!
kika
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 25, 2008 00:01
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.