• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números Complexos na forma trigonométrica

Números Complexos na forma trigonométrica

Mensagempor geriane » Seg Jul 05, 2010 12:16

Calcule o módulo do complexo {(\frac{4}{1-i\sqrt[2]{3}}})^{-8}.
Obrigada!
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor Tom » Seg Jul 05, 2010 12:57

(\dfrac{4}{1-i\sqrt{3}})^{-8}=(\dfrac{1-i\sqrt{3}}{4})^8=\dfrac{(1-i\sqrt{3})^8}{4^8}

Analisemos : z=1-i\sqrt{3}:

Usando as definições: |z|=2 e o argumento de z é \theta=\dfrac{5\pi}{6}

Assim, escrevendo z na forma polar: z=2(cos\dfrac{5\pi}{6}+i.sen\dfrac{5\pi}{6}) e usando a propriedade de potenciação para complexos:

z^8=2^8(cos\dfrac{8.5\pi}{6}+i.sen\dfrac{8.5\pi}{6})=2^8(cos\dfrac{20\pi}{3}+i.sen\dfrac{20\pi}{3}) e , com a redução do arco ao primeiro quadrente,
z^8=2^8(cos\dfrac{2\pi}{3}+i.sen\dfrac{2\pi}{3})


Voltando a expressão: \dfrac{(1-i\sqrt{3})^8}{4^8}=\dfrac{2^8(cos\dfrac{2\pi}{3}+i.sen\dfrac{2\pi}{3})}{2^{16}}=\dfrac{(cos\dfrac{2\pi}{3}+i.sen\dfrac{2\pi}{3})}{2^8}=\dfrac{\frac{-1}{2}+\frac{\sqrt{3}i}{2}}{2^8}

Finalmente, o valor da expressão é: \dfrac{-1+\sqrt{3}i}{512}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor geriane » Seg Jul 05, 2010 13:34

Tom, fico muito agradecida só que o resultado final do exercício é 1/256 e não estou conseguindo chegar a esse resultado eu fiz dessa maneira que você fez só q não consigo chegar ao resultado.
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor Elcioschin » Seg Jul 05, 2010 16:10

Tom/Geriane

A solução do Tom, esta perfeita do ponto de vista do encaminhamento. Faltou apenas:

a) Corrigir um pequeno erro de cálculo do argumento
b) Calcular o módulo no final

z = 1 - i*V3 ----> z = 2*(1/2 - i*V3/2) ----> ângulo do 4º quadrante ---> z = 2*[cos(5pi/3) + isen(5pi/3)]

Assim ----> teta = 5pi/3

z^8 = (2^8)*[cos(8*5pi/3) + i*sen(8*5pi/3)] ----> z = 2*[cos(40*pi/3) + i*sen(40*pi/3)]

Reduzindo ao 1º quadrante ---> z = (2~8)*[cos(4pi/3) +i*sen(4pi/3)]

z = (2^8)*[- 1/2 - i*V3/2)

Neste caso o valor da expressão é (- 1 - V3*i)/512

|z|² = (1/512)²*[(-1)² + (-V3)²] ---> |z|² = (1/512)²*(1 + 3) ----> |z|² = 4/512² ----> |z|² = 2²/512²

|z = 2/512 ----> |z| = 1/256
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor geriane » Seg Jul 05, 2010 17:00

Obrigada Tom e Elcio pela atenção !!!!!!!!!
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor Tom » Seg Jul 05, 2010 23:04

Desculpe, acho que copiei errado quando passei a questão pro caderno. ;)
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D