• Anúncio Global
    Respostas
    Exibições
    Última mensagem

somatória com número complexo

somatória com número complexo

Mensagempor ezidia51 » Qua Abr 04, 2018 17:44

Alguém pode me ajudar com esta somatória de número complexo?
\sum_{n=1}^{20.241} i^n sendo que i^2=-1
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: somatória com número complexo

Mensagempor Gebe » Qui Abr 05, 2018 01:22

Nesse tipo de questao (somatorias e sequencias) é sempre interessante escreve um pedaço da somatoria para melhor avalia-la. Sendo assim podemos escrever alguns termos:
\sum_{1}^{20241}i^n=(i)+(-1)+(-i)+(1)+(i)+(-1)+(-i)+(1)+(i)...

Consegue ver um padrão? Perceba que temos sempre termos se cancelando, veja, por exemplo, que o 1° termo se cancela com o 3° e o 2° com o 4°.
Esse comportamento acontece de 4 em 4 termos, ou seja, passados 4 termos a sequencia se repete.

Apenas com isso ja temos apenas 4 alternativas, podemos acabar o somatorio com todos termos cancelados resultando 0, podemos acabar no termo i (resultando i), no termo -1 (resultando i-1) e no termo -i (resultando -1).

Para saber qual dessas é a nossa resposta basta dividirmos o numero de termos do somatorio por 4, ou seja, queremos saber quantas daquelas sequencias que mencionamos cabem no somatorio.

\\
\frac{20241}{4}=5060+\frac{1}{4}

Couberam 5060 sequencias e sobrou ainda um termo, ou seja, o ultimo termo do somatorio i^20241 seria o começo de uma nova sequencia, portanto nossa resposta é i (todos outros termos se cancelaram).

Espero ter ajudado, qualquer duvida mande msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 153
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: somatória com número complexo

Mensagempor ezidia51 » Qui Abr 05, 2018 13:08

Um super muito obrigado!!!! :y: :y: :y: :y: :y: :y: Você tem me ajudado muito !!!Muito obrigado mesmo!!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 81
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: somatória com número complexo

Mensagempor Gebe » Qui Abr 05, 2018 13:32

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 153
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.