• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potencias no processo de igualar a zero

Potencias no processo de igualar a zero

Mensagempor Soprano » Dom Fev 14, 2016 17:38

Olá a todos,

Numa resolução de sistema de equações racionais é necessário igualar o denominador a zero. O valor no denominador é 15x³(x-4). Então temos que fazer 15x³ = 0 que fica igual a x=0.

O que não percebi!
Consigo perceber que o 15 passa de multiplicar para o outro lado a dividir. E zero a dividir por alguma coisa é igual a zero. Mas como fazo com a potencia que fica no x. Aquele expoente como desaparece?

Outra questão:
Porque que "divido" a expressão 15x³(x-4) em dois? Não deveria aplicar a dsitribuitiva para resolver e no final igualar a zero para descobrir o valor de x? Ficaria algo deste genero:

15x³(x-4)
15x?-60x³=0
...

Isto não tem lógica, certo? Estou a colocar o meu raciocinio aqui mesmo para testar as coisas :P Eu por vezes penso demasiado fora da caixa!
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: Potencias no processo de igualar a zero

Mensagempor DanielFerreira » Dom Fev 14, 2016 18:07

Olá!

Uma equação do 2º grau completa é da forma ax^2 + bx + c = 0, onde a \neq 0. Considere a equação de grau 2 em que b = 0, daí ficamos com ax^2 + c = 0; tal equação também é do 2º grau, mas incompleta.

Tomemos como exemplo a seguinte equação: x^2 - 25 = 0. Para encontrar suas raízes fazemos:

\\ x^2 - 25 = 0 \\ x^2 = 25 \\ x = \sqrt[2]{25} \\ \boxed{x = \pm 5}

Ora, para resolver tua equação, aplicamos raciocínio análogo, veja:

\\ 15x^3 = 0 \\\\ x^3 = \frac{0}{15} \\\\ x^3 = 0 \\\\ x = \sqrt[3]{0} \\\\ \boxed{x = 0}

Soprano escreveu:Outra questão:
Porque que "divido" a expressão 15x³(x-4) em dois? Não deveria aplicar a dsitribuitiva para resolver e no final igualar a zero para descobrir o valor de x? Ficaria algo deste genero:

15x³(x-4)
15x?-60x³=0
...

Isto não tem lógica, certo? Estou a colocar o meu raciocinio aqui mesmo para testar as coisas :P Eu por vezes penso demasiado fora da caixa!


Nessa dúvida, podemos tomar como exemplo uma equação do 2º grau incompleta em que c = 0, isto é, ax^2 + bx = 0.

Poderá resolver essa equação pelo método usual (Bhaskara) ou pondo o x em evidência. Prefiro este, pois reduz a resolução em algumas linhas, por conseguinte, a chance de cometer alguma distração é menor.

Finalizo dizendo que tanto faz e tem lógica sim!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Potencias no processo de igualar a zero

Mensagempor Cleyson007 » Dom Fev 14, 2016 18:11

Sua primeira dúvida:

Não faz sentido dizer que o denominador é o a zero (o denominador de uma função racional é sempre diferente de zero).

Quanto a condição de 15x³(x-4) ser igual a zero, temos: 15x³ = 0 --> x = 0 ou x - 4 = 0 ---> x = 4.

Sua segunda dúvida:

Repare que quando "dividimos" em duas partes, encontramos dois valores para a qual o produto entre as duas funções é nulo (são os valores de 0 ou 4). Repare que a distributiva resultou num polinômio de quarto grau e, de fato, 0 ou 4 são raízes desta equação. Resumindo, temos a mesma "coisa" mas escrita de formas diferentes.

Bons estudos.

Att,

Prof° Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1227
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}