• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números Complexos (UFPel-RS)

Números Complexos (UFPel-RS)

Mensagempor LeoR » Sex Out 11, 2013 19:18

Seja o número complexo Z=a+bi, em que a e b são números reais, a>b,i a unidade imaginária e o seu conjugado. Representando-se geometricamente, no plano de Argand-Gauss, os números Z,-Z, conjugado de Z e o negativo do conjugado de Z, teremos os vértices de um quadrilátero com área e perímetro iguais a 24 unidades de área e 20 unidades de comprimento, respectivamente. É correto afirmar que a forma algébrica de Z é: a)1+5i b)6+4i c)2+3i d)5+i e)3+2i f)I.R.

Bem, eu entendi que perímetro é a soma dos lados, então: Z +(-Z)+(conjugado de Z)+(negativo do conjugado de Z)=20
Então: (a+bi)+(-a-bi)+(a-bi)+(-a+bi)=20 mas ficaria 0=20.. travei aqui. Se puderem me ajudar agradeço. Desculpa nao ter desenvolvido mais..
LeoR
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Set 02, 2013 15:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Números Complexos (UFPel-RS)

Mensagempor Man Utd » Qua Fev 12, 2014 16:06

esboçando no plano Argand-Gauss, percebemos que é um retângulo de base 2a e altura 2b, então teremos o seguintes sistem:


4a+4b=20


(2a)*(2b)=24


resolva o sistema, no final considere que a>b.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}