• Anúncio Global
    Respostas
    Exibições
    Última mensagem

somatória com número complexo

somatória com número complexo

Mensagempor ezidia51 » Qua Abr 04, 2018 17:44

Alguém pode me ajudar com esta somatória de número complexo?
\sum_{n=1}^{20.241} i^n sendo que i^2=-1
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: somatória com número complexo

Mensagempor Gebe » Qui Abr 05, 2018 01:22

Nesse tipo de questao (somatorias e sequencias) é sempre interessante escreve um pedaço da somatoria para melhor avalia-la. Sendo assim podemos escrever alguns termos:
\sum_{1}^{20241}i^n=(i)+(-1)+(-i)+(1)+(i)+(-1)+(-i)+(1)+(i)...

Consegue ver um padrão? Perceba que temos sempre termos se cancelando, veja, por exemplo, que o 1° termo se cancela com o 3° e o 2° com o 4°.
Esse comportamento acontece de 4 em 4 termos, ou seja, passados 4 termos a sequencia se repete.

Apenas com isso ja temos apenas 4 alternativas, podemos acabar o somatorio com todos termos cancelados resultando 0, podemos acabar no termo i (resultando i), no termo -1 (resultando i-1) e no termo -i (resultando -1).

Para saber qual dessas é a nossa resposta basta dividirmos o numero de termos do somatorio por 4, ou seja, queremos saber quantas daquelas sequencias que mencionamos cabem no somatorio.

\\
\frac{20241}{4}=5060+\frac{1}{4}

Couberam 5060 sequencias e sobrou ainda um termo, ou seja, o ultimo termo do somatorio i^20241 seria o começo de uma nova sequencia, portanto nossa resposta é i (todos outros termos se cancelaram).

Espero ter ajudado, qualquer duvida mande msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: somatória com número complexo

Mensagempor ezidia51 » Qui Abr 05, 2018 13:08

Um super muito obrigado!!!! :y: :y: :y: :y: :y: :y: Você tem me ajudado muito !!!Muito obrigado mesmo!!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: somatória com número complexo

Mensagempor Gebe » Qui Abr 05, 2018 13:32

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}