• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Qual é divisivel por 6

Qual é divisivel por 6

Mensagempor leticiapires52 » Seg Mai 12, 2014 11:43

Considere os números abaixo, sendo n um número natural:
I) {10}^{n} + 2
II) 2.{10}^{n}+ 1
III) {10}^{n+3} - {10}^{n}
Quais são divisíveis por 6?
a) Apenas II e III
b) Apenas I e II
c) Apenas III
d) Apenas I
e) Apenas I e III
leticiapires52
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 100
Registrado em: Qua Fev 12, 2014 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Qual é divisivel por 6

Mensagempor e8group » Seg Mai 12, 2014 12:55

O primeiro satisfaz . Com certeza você terá uma justificação melhor que a minha , não sei qual ferramenta utilizar , mas usando (*) a^n - b^n =  (a-b ) \sum_{k=0}^{n-1} a^k b^{n-1-k} obtemos , para n = 2,3,4,...

10^n + 2  =  (10^n - 1^n) + 3  =   3  + 9  \sum_{k=0}^{n-1} 10^k  =  3  +  9  +  9  \sum_{k=1}^{n-1} 2^k \cdot 5^k  = 6 \cdot (2  +   3  \sum_{k=1}^{n-1} 2^{k-1} \cdot 5^{k}  ) =  6(2  + 3[5 +  50 + 500 +  \cdots +  2^{n-2} \cdot 10^{n-1} ] .

Um número é divisível por 6 se ele for simultaneamente por 3 e 2 , claro . No mínimo ele é par , logo o último digito dele é 0,2,4,6,8 .Agora ,se ele for divisível por 3 , investigamos certas propriedades . Escreva m = 3 n (m,n inteiros ) . Podemos representar m por
sinal(m) \times (d_n d_{n-1} \cdots d_1 d_0)_{10}   =  sinal(m)  times (d_n \cdot 10^{n} + d_{n-1} 10^{n-1} + \cdots +  d_1 10 + d_0) onde os d_{i's} variam de 0 a 9 .

Exemplo : 125 = (125)_{10}  =  1 \cdot 10^2 + 2 \cdot 10^1 + 5\cdot 10^0 .Segue


m = 3n = d_n ( \cdot 10^{n} - 1 ) + d_{n-1} (10^{n-1} -1)  +  \cdots  +  d_1 \cdot (10 - 1) +  (d_n +d_{n-1} + \cdots + d_1 + d_0 ) . Graças a fatoração a^n -b^n cada parcela 10^k -1 é divisível por 3 , e com isso a soma dos dígitos também o é .Alternativamente 10^k =  1 \cdot 10^k + 0 \cdot 10^{k-1} + ... + 0 \cdot 10^0  =  1000 \hdots 000

(1)_{10} =  0 \cdot 10^k + 0 \cdot 10^{k-1} + ... + 0  \cdot 10^{1} + 1  \cdot 10^0  = ( 000000  ...  0001)_{10} . Fazendo a subtração de números de mesma base , temos 9999 .... 9999  =  3^2 (11111....1111) .Logo a soma dos dígitos também são divisível por 3 .

Este é um resultado do critérios de divisibilidade . Só não sei qual abordagem certa ...


Emfim :
(i)
10^n + 2  =    (10000 ... 0002)_{10} . O último dígito é 2 \implies número é par \implies divisível por 2 .

(ii) A soma dos dígitos é 3 \implies divisível por 3 .

\therefore  [(i) \wedge (ii) ] \implies  6 | (10^n+2) .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?