por mary leal » Sáb Out 24, 2009 13:51
por favor me ajudem sei que a resposta e 3+2i
mais ja tirei a potencia e enpaquei , preciso resolver e apreender como se faz, tenho que levar terça feira para meu professor.
se nao entender minha questão pode ser outra com a mesma formula todos os i estao elevados a um numero.
Coloque em forma algébrica a+bi o numero complexo
i?-2i²+i??3i?
????????
i?? i?+i?
-
mary leal
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Out 23, 2009 00:35
- Formação Escolar: EJA
- Andamento: cursando
por Cleyson007 » Sáb Out 24, 2009 14:59
Boa tarde Mary Leal!
Primeiramente, seja bem vinda ao Ajuda Matemática!
Você quer saber o seguinte:

Vale lembrar que



Resolvendo,


Note que você pode somar a parte real do numerador:

Note que há uma divisão de números complexos a ser efetuada!
A regra da divisão de números complexos diz que:
"A divisão a ser efetuada é multiplicada pelo conjugado do denominador".
O conjugado do denominador é:

(Note que é alterado o sinal da parte imaginária).

Resolvendo a multiplicação dos números complexos, temos:



Mary Leal, note que os números do numerador e do denominador são pares, portanto, posso dividí-los por 2:

--> Esse é o número complexo em forma algébrica após a divisão.
Comente qualquer dúvida
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por mary leal » Sáb Out 24, 2009 15:13
obrigada ate mais. Euclides
-
mary leal
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Sex Out 23, 2009 00:35
- Formação Escolar: EJA
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- coloque na forma algebrica a+bi o numero complexo
por mary leal » Qui Out 29, 2009 04:04
- 2 Respostas
- 3896 Exibições
- Última mensagem por mary leal

Seg Nov 02, 2009 20:39
Matemática Financeira
-
- [módulo do número complexo]
por JKS » Qui Jun 20, 2013 01:56
- 1 Respostas
- 2921 Exibições
- Última mensagem por MateusL

Qui Jul 18, 2013 19:49
Números Complexos
-
- Equação de número complexo
por YuriFreire » Seg Set 01, 2014 21:44
- 3 Respostas
- 4930 Exibições
- Última mensagem por adauto martins

Seg Set 22, 2014 21:19
Números Complexos
-
- somatória com número complexo
por ezidia51 » Qua Abr 04, 2018 17:44
- 3 Respostas
- 10228 Exibições
- Última mensagem por Gebe

Qui Abr 05, 2018 13:32
Números Complexos
-
- Forma algébrica, duvida em exercicio
por DonTLie » Ter Mar 09, 2010 20:56
- 2 Respostas
- 2861 Exibições
- Última mensagem por DonTLie

Ter Mar 09, 2010 22:01
Tópicos sem Interação (leia as regras)
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.