por FrIcaro » Seg Ago 10, 2009 16:11
Olá!
Estou com problemas para visualizar a solução desta questão.
Questão:
O valor de Z:

(Não consigui usar o LATEX para a divisão)
Bom, eu, inicialmente, resolvi a divisão do

por

, mutiplicando pela conjugado do denominador. Deu a seguinte resposta:
![Z'''= [(\sqrt{3} + 1) + (\sqrt{3} - 1)i / 2]^{(200)} Z'''= [(\sqrt{3} + 1) + (\sqrt{3} - 1)i / 2]^{(200)}](/latexrender/pictures/2c78e0f7df37543e99d2d6670317b89e.png)
. Tudo bem até aí. Entretanto, quando fui passar para a potência, pensando em usar Moivre, percebi que o ângulo não era notável e, para piorar, o expoente era muito alto. Eu pensei em decompor o expoente, mas, mesmo assim, eu não sei como encontrar o valor do argumento através do Seno e do Cosseno. Alguém me dá uma orientação na questão?
-
FrIcaro
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Ago 10, 2009 15:34
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: cursando
por Felipe Schucman » Qui Ago 13, 2009 21:14
Bom Dia,
Vou explicar resumidamente como deve ser feito caso fique alguma duvida eu faço....
Você tem que passar o numero para forma trigonométrica pois na forma trigonométrica tem um maneira de se fazer a ponteciação sem que se tenha que multiplicar as 200 vezes...existe para isso uma formula:

sendo que no caso

é o angulo da forma trigonométrica e r é o modulo.
Espero ter ajudado! Qualquer duvida sobre a passagem para forma trigonométrica ou a explicação a cima é só falar...
Um abraço!
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
por Elcioschin » Sáb Ago 15, 2009 20:33
Complementando a resposta do Felipe:
Numerador ----> (V3 - i)^200 = {2*[V3/2 - (1/2)*i]}^200 = (2^200)*[cos(11*pi/6) + i*sen(11*pi/6)]^200
(V3 - i)^200 = (2^200)*[cos(200*11*pi/6) + i*sen(200*11*pi/6)] = (2^200)*[cos(366*pi + 2*pi/3) + i*sen(366*pi + 2*pi/3)]
(V3 - i)^200 = (2^200)*[cos(2*pi/3) + i*sen(2*pi/3)] = (2^200)*(- 1/2 + i*V3/2)
Denominador ----> (1 - i)^200 = [V2*(V2/2 - i*V2/2)]^200 = [(V2)^200]*[cos(7*pi/4) + i*sen(7*pi/4]^200
(1 - i)^200 = (2^100)*[cos(200*7*pi/4) + i*sen(200*7*pi/4)]^200 = (2^100)*[cos(350*pi) + i*sen(350*pi)]
(1 - i)^200 = (2^100)*(1 + 0*i) -----> (1 - i)^200 = 2^100
Dividindo o numerador pelo denomindor -----> Z = (2^100)*(- 1/2 + i*V3/2) ----> Z = (2^99)*(- 1 + i*V3)
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Série de Potencias Complexos
por Russman » Qui Out 04, 2012 21:24
- 2 Respostas
- 2096 Exibições
- Última mensagem por Russman

Qui Out 04, 2012 22:20
Números Complexos
-
- Série de Potências Complexos [2]
por Russman » Qui Out 04, 2012 23:21
- 1 Respostas
- 1882 Exibições
- Última mensagem por young_jedi

Sex Out 05, 2012 11:39
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 15984 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
-
- Numeros complexos!
por Estela » Seg Mar 17, 2008 00:57
- 7 Respostas
- 12033 Exibições
- Última mensagem por andegledson

Seg Nov 02, 2009 21:41
Números Complexos
-
- Números Complexos
por michelle » Dom Ago 31, 2008 15:35
- 3 Respostas
- 9315 Exibições
- Última mensagem por admin

Dom Ago 31, 2008 21:00
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.